Generators for the l-Torsion Subgroup of Jacobians of Genus Two Curves

被引:0
|
作者
Ravnshoj, Christian Robenhagen [1 ]
机构
[1] Univ Aarhus, Dept Math Sci, DK-8000 Aarhus C, Denmark
来源
PAIRING-BASED CRYPTOGRAPHY - PAIRING 2008 | 2008年 / 5209卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give an explicit description of the matrix representation of the Frobenius endomorphism on the Jacobian of a genus two curve on the subgroup of l-torsion points. By using this description, we can describe the matrix representation of the Weil-pairing on the subgroup of e-torsion points explicitly. Finally, the explicit description of the Weil-pairing provides us with an efficient, probabilistic algorithm to find generators of the subgroup of l-torsion points on the Jacobian of a genus two curve.
引用
收藏
页码:225 / 242
页数:18
相关论文
共 50 条
  • [41] Curves of genus 2 with (N, N) decomposable Jacobians
    Shaska, T
    JOURNAL OF SYMBOLIC COMPUTATION, 2001, 31 (05) : 603 - 617
  • [42] AN ANALOG OF THE EDWARDS MODEL FOR JACOBIANS OF GENUS 2 CURVES
    Flynn, E. Victor
    Khuri-Makdisi, Kamal
    arXiv, 2022,
  • [44] An analog of the Edwards model for Jacobians of genus 2 curves
    Flynn, E. V.
    Khuri-Makdisi, K.
    RESEARCH IN NUMBER THEORY, 2024, 10 (02)
  • [45] Two-Vertex Generators of Jacobians of Graphs
    Brandfonbrener, David
    Devlin, Pat
    Friedenberg, Netanel
    Ke, Yuxuan
    Marcus, Steffen
    Reichard, Henry
    Sciamma, Ethan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [46] Average bounds for the l-torsion in class groups of cyclic extensions
    Frei, Christopher
    Widmer, Martin
    RESEARCH IN NUMBER THEORY, 2018, 4
  • [47] Genus-2 Jacobians with torsion points of large order
    Howe, Everett W.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 : 127 - 135
  • [48] Good elliptic curves with a specified torsion subgroup
    Barrios, Alexander J.
    JOURNAL OF NUMBER THEORY, 2023, 242 : 21 - 43
  • [49] Rational torsion in elliptic curves and the cuspidal subgroup
    Agashe, Amod
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (01): : 81 - 91
  • [50] New curves of genus 2 over the field of rational numbers whose Jacobians contain torsion points of high order
    Platonov, V. P.
    Petrunin, M. M.
    DOKLADY MATHEMATICS, 2015, 91 (02) : 220 - 221