Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast Poisson preconditioners

被引:25
|
作者
Moroney, Timothy [1 ]
Yang, Qianqian [1 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
关键词
Two-sided fractional diffusion; Fast Poisson preconditioner; Nonlinear; Method of lines; Jacobian-free Newton-Krylov; FINITE-DIFFERENCE APPROXIMATIONS; ADVECTION-DISPERSION EQUATION; NUMERICAL-METHODS; LEVY MOTION; SCHEME; TIME;
D O I
10.1016/j.jcp.2013.03.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We develop a fast Poisson preconditioner for the efficient numerical solution of a class of two-sided nonlinear space-fractional diffusion equations in one and two dimensions using the method of lines. Using the shifted Grunwald finite difference formulas to approximate the two-sided (i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local property of fractional derivatives. We employ a modern initial value problem solver utilising backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve these systems. For efficient performance of the Jacobian-free Newton-Krylov method it is essential to apply an effective preconditioner to accelerate the convergence of the linear iterative solver. The key contribution of our work is to generalise the fast Poisson preconditioner, widely used for integer-order diffusion equations, so that it applies to the two-sided space-fractional diffusion equation. A number of numerical experiments are presented to demonstrate the effectiveness of the preconditioner and the overall solution strategy. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:304 / 317
页数:14
相关论文
共 50 条
  • [31] Efficient Numerical Solution of Space-Fractional Diffusion Problems
    Izsak, Ferenc
    Szekeres, Bela J.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2018, 2019, 30 : 307 - 312
  • [32] A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations
    Zhang, Chun-Hua
    Yu, Jian-Wei
    Wang, Xiang
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1813 - 1836
  • [33] FAST FINITE VOLUME METHODS FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Cheng, Aijie
    Wang, Kaixin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (05): : 1427 - 1441
  • [34] A FAST FINITE DIFFERENCE METHOD FOR TWO-DIMENSIONAL SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Basu, Treena S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : A2444 - A2458
  • [35] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [36] A fast method for variable-order space-fractional diffusion equations
    Jinhong Jia
    Xiangcheng Zheng
    Hongfei Fu
    Pingfei Dai
    Hong Wang
    Numerical Algorithms, 2020, 85 : 1519 - 1540
  • [37] Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption
    Lenzi, EK
    Mendes, GA
    Mendes, RS
    da Silva, LR
    Lucena, LS
    PHYSICAL REVIEW E, 2003, 67 (05):
  • [38] Discrete monotone method for space-fractional nonlinear reaction–diffusion equations
    Salvador Flores
    Jorge E. Macías-Díaz
    Ahmed S. Hendy
    Advances in Difference Equations, 2019
  • [39] A Fast Preconditioned Semi-Implicit Difference Scheme for Strongly Nonlinear Space-Fractional Diffusion Equations
    Huang, Yu-Yun
    Gu, Xian-Ming
    Gong, Yi
    Li, Hu
    Zhao, Yong-Liang
    Carpentieri, Bruno
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [40] Optimal-order finite element approximations to variable-coefficient two-sided space-fractional advection-reaction-diffusion equations in three space dimensions
    Zheng, Xiangcheng
    Liu, Huan
    Wang, Hong
    Fu, Hongfei
    APPLIED NUMERICAL MATHEMATICS, 2021, 161 : 1 - 12