Enhanced Fenton, photo-Fenton and peroxidase-like activity and stability over Fe3O4/g-C3N4 nanocomposites

被引:49
|
作者
Sahar, Shafaq [1 ]
Zeb, Akif [1 ,2 ]
Liu, Yanan [1 ]
Ullah, Naseeb [1 ]
Xu, Anwu [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Div Nanomat & Chem, Hefei 230026, Anhui, Peoples R China
[2] Natl Univ Sci & Technol, IESE, SCEE, Sect H-12, Islamabad, Pakistan
基金
中国国家自然科学基金;
关键词
Fe3O4/g-C3N4; nanocomposites; Fenton reaction; Dye degradation; Peroxidase activity; Horseradish peroxidase mimicking; Dopamine oxidation; GRAPHITIC CARBON NITRIDE; PHOTOCATALYTIC ACTIVITY; HYDROGEN-PEROXIDE; CO2; REDUCTION; COMPOSITE; G-C3N4; OXIDE; DEGRADATION; OXIDATION; DECOMPOSITION;
D O I
10.1016/S1872-2067(17)62957-7
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
We prepared the Fe3O4/g-C3N4 nanoparticles (NPs) through a simple electrostatic self-assembly method with a 3:97 weight ratio to investigate their Fenton, photo-Fenton and oxidative functionalities besides photocatalytic functionality. We observed an improvement of the Fenton and photo -Fenton activities of the Fe3O4/g-C3N4 nanocomposites. This improvement was attributed to efficient charge transfer between Fe3O4 and g-C3N4 at the heterojunctions, inhibition of electron-hole recombination, a high surface area, and stabilization of Fe3O4 against leaching by the hydrophobic g-C3N4. The obtained NPs showed a higher degradation potential for rhodamine B (RhB) dye than those of Fe3O4 and g-C3N4. As compared to photocatalysis, the efficiency of RhB degradation in the Fenton and photo-Fenton reactions was increased by 20% and 90%, respectively. Additionally, the horseradish peroxidase (HRP) activity of the prepared nanomaterials was studied with 3,3,5,5-tetramethylbenzidinedihydrochloride (TMB) as a substrate. Dopamine oxidation was also examined. Results indicate that Fe3O4/g-C3N4 nanocomposites offers more efficient degradation of RhB dye in a photo-Fenton system compared with regular photocatalytic degradation, which requires a long time. Our study also confirmed that Fe3O4/g-C3N4 nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB. These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2110 / 2119
页数:10
相关论文
共 50 条
  • [11] Magnetic recyclable heterogeneous catalyst Fe3O4/g-C3N4 for tetracycline hydrochloride degradation via photo-Fenton process under visible light
    Cui, Kang-Ping
    Yang, Ting-Ting
    Chen, Yi-Han
    Weerasooriya, Rohan
    Li, Guang-Hong
    Zhou, Kai
    Chen, Xing
    ENVIRONMENTAL TECHNOLOGY, 2022, 43 (21) : 3341 - 3354
  • [12] Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts
    Ye, Yongchun
    Yang, Hua
    Wang, Xiangxian
    Feng, Wangjun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 82 : 14 - 24
  • [13] 3D interconnected porous g-C3N4 hybridized with Fe2O3 quantum dots for enhanced photo-Fenton performance
    Liu, Dong
    Li, Chunling
    Ni, Tianjun
    Gao, Ranpeng
    Ge, Jiayu
    Zhang, Fengquan
    Wu, Weidong
    Li, Jinliang
    Zhao, Qian
    APPLIED SURFACE SCIENCE, 2021, 555
  • [14] Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance
    Palanivel, Baskaran
    perumal, Saranya devi Mudisoodum
    Maiyalagan, Thandavarayan
    Jayarman, Venkatesan
    Ayyappan, Chinnadurai
    Alagiri, Mani
    APPLIED SURFACE SCIENCE, 2019, 498
  • [15] Magnetically separable ZnFe2O4 grafted g-C3N4/rGO ternary nanocomposites for enhanced photo-Fenton catalytic activity under visible light
    Das, Suma
    Das, Soumik
    Nair, Ranjith G.
    Chowdhury, Avijit
    MATERIALS TODAY SUSTAINABILITY, 2023, 21
  • [16] Fe3O4 quantum dots/g-C3N4/coal-measure 3 N 4 /coal-measure kaolinite composite for efficient photo-Fenton degradation of tetracycline hydrochloride
    Qiu, Hengjian
    Zhu, Lei
    Liu, Chengyong
    Zhao, Mengye
    Li, Jingmai
    Ding, Ziwei
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 169
  • [17] Microenvironment modulation of Fe single atoms in porous g-C3N4 by introducing - SOx groups for enhanced photo-Fenton reactions
    Xu, Mao
    Zhang, Qianyu
    Wang, Shumei
    Chen, Wei
    Zhao, Yanying
    Li, Benxia
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [18] Synthesis of Fe3O4-Au Nanocomposites with Enhanced Peroxidase-Like Activity
    Sun, Haiyan
    Jiao, Xiuling
    Han, Yanyang
    Jiang, Zhen
    Chen, Dairong
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2013, (01) : 109 - 114
  • [19] Novel Magnetic Fe3O4/α-FeOOH Nanocomposites and Their Enhanced Mechanism for Tetracycline Hydrochloride Removal in the Visible Photo-Fenton Process
    Huang, Xinyi
    Zhou, Hui
    Yue, Xiaojun
    Ran, Songlin
    Zhu, Jianhua
    ACS OMEGA, 2021, 6 (13): : 9095 - 9103
  • [20] High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation
    Cao, Zhou
    Jia, Yuefa
    Wang, Qizhao
    Cheng, Hongfei
    APPLIED CLAY SCIENCE, 2021, 212