Shear Locking Analysis of Plate Bending by Using Meshless Local Radial Point Interpolation Method

被引:8
|
作者
Xia Ping [1 ]
Wei Kexiang [1 ]
机构
[1] Hunan Inst Engn, Dept Mech Engn, Xiangtan 411101, Peoples R China
来源
PROGRESS IN STRUCTURE, PTS 1-4 | 2012年 / 166-169卷
关键词
meshless local radial point interpolation method; radial basis function; bending problem; shear locking; FREE-VIBRATION ANALYSES; GALERKIN METHOD;
D O I
10.4028/www.scientific.net/AMM.166-169.2867
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The shape function of the meshless local radial point interpolation method is constructed by using the radial basis functions and possesses Kronecker delta function properties. Therefore, the essential boundary conditions can be easily imposed. Causation of shear locking occur in plate bending is analyzed. Bending problems for plate with two sides simply supported, the other two sides clamped boundary conditions, are analyzed by the meshless local radial point interpolation method. The shear locking is easier avoided in the meshless method than in the finite element method, and the measure of avoiding the shear locking are presented.
引用
收藏
页码:2867 / 2870
页数:4
相关论文
共 50 条
  • [41] The Natural Neighbour Radial Point Interpolation Meshless Method Applied to the Non-Linear Analysis
    Dinis, L. M. J. S.
    Natal Jorge, R. M.
    Belinha, J.
    14TH INTERNATIONAL CONFERENCE ON MATERIAL FORMING ESAFORM, 2011 PROCEEDINGS, 2011, 1353 : 1175 - 1178
  • [42] Numerical simulation of ground water flow via a new approach to the local radial point interpolation meshless method
    Saeedpanah, I.
    Jabbari, E.
    Shayanfar, M. A.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2011, 25 (01) : 17 - 30
  • [43] Effective shear modulus approach for two dimensional solids and plate bending problems by meshless point collocation method
    Tu, W.
    Gu, Y. T.
    Wen, P. H.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (05) : 675 - 684
  • [44] On the Numerical Dispersion of the Radial Point Interpolation Meshless (RPIM) Method in Lossy Media
    Zhang, Xiaoyan
    Chen, Zhizhang
    Yu, Yiqiang
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2018, 33 (12): : 1332 - 1339
  • [45] An application of the meshless radial point interpolation method to the structural topology optimization design
    Zheng, Juan
    Long, Shuyao
    Xiong, Yuanbo
    Li, Guangyao
    Guti Lixue Xuebao/Acta Mechanica Solida Sinica, 2010, 31 (04): : 427 - 432
  • [46] An Adaptive Radial Point Interpolation Meshless Method for Simulation of Electromagnetic and Optical Fields
    Afsari, Arman
    Movahhedi, Masoud
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (07)
  • [47] Meshless formulation for shear-locking free bending elements
    Kanok-Nukulchai, W
    Barry, WJ
    Saran-Yasoontorn, K
    STRUCTURAL ENGINEERING AND MECHANICS, 2001, 11 (02) : 123 - 132
  • [48] Geometrically Nonlinear Analysis for Elastic Beam Using Point Interpolation Meshless Method
    He, Cheng
    Wu, Xinhai
    Wang, Tao
    He, Huan
    SHOCK AND VIBRATION, 2019, 2019
  • [49] Radial Point Interpolation Method for Isotropic Nanoplates in Bending Using Strain Gradient Theory
    Saitta, Serena
    Fabbrocino, Francesco
    Vescovini, Riccardo
    Fantuzzi, Nicholas
    Luciano, Raimondo
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (10)
  • [50] Study of Periodic Structures at Oblique Incidence by Radial Point Interpolation Meshless Method
    Zhu, Hui
    Gao, Cheng
    Chen, Hailin
    Chen, Bin
    Wang, Jianbao
    Cai, Zhaoyang
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 982 - 985