Breast cancer, as the foremost cause of women's death in the world, is highly metastatic and mutable. Resistance to drugs for chemotherapies, endocrine therapies, and targeted therapies is an important factor that impacts the prognosis of breast cancer. Long non-coding ribonucleic acids (LncRNAs) are crucial regulators of intracellular gene expressions. Some researchers have suggested that expression level of several types of LncRNAs were closely related to the prognosis of patients with breast cancer. LncRNAs significantly impact biological processes such as drug transport, detoxication, apoptosis, epithelial to mesenchymal transition (EMT), and autophagy by regulating intracellular signaling pathways such as multi-drug resistance gene 1 (MDR1), nuclear factor erythroid 2-related factor 2 (NRF2), phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), transforming growth factor-beta (TGF-beta), BRCA1/2, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappa B). This paper will summarize research progress on correlations between LncRNA and drug resistance of breast cancer. It will particularly expound molecular mechanisms through which LncRNAs regulate drug resistance of breast cancer. It will further discuss the feasibility as molecular markers for forecasting drug resistance of breast cancer and may be becoming new targets for treating breast cancer in the future. (C) 2020 Elsevier Inc. All rights reserved.