Insights into maize genome editing via CRISPR/Cas9

被引:26
|
作者
Agarwal, Astha [1 ]
Yadava, Pranjal [1 ,2 ]
Kumar, Krishan [1 ]
Singh, Ishwar [1 ]
Kaul, Tanushri [3 ]
Pattanayak, Arunava [4 ]
Agrawal, Pawan Kumar [5 ]
机构
[1] Indian Inst Maize Res, Indian Council Agr Res, Pusa Campus, New Delhi 110012, India
[2] Stanford Univ, Dept Biol, 385 Serra Mall, Stanford, CA 94305 USA
[3] Int Ctr Genet Engn & Biotechnol, Aruna Asaf Ali Marg, New Delhi 110067, India
[4] Indian Council Agr Res Vivekananda Parvatiya Kris, Almora 263601, Uttarakhand, India
[5] Indian Council Agr Res, Natl Agr Sci Fund, Krishi Anusandhan Bhavan 1, New Delhi 110012, India
关键词
CRISPR; Cas9; Gene editing; Genome modification; Maize; TARGETED MUTAGENESIS; OFF-TARGET; GUIDE RNA; HOMOLOGOUS RECOMBINATION; CAS9; RICE; TRANSCRIPTION; ENDONUCLEASE; SYSTEM; PLANTS;
D O I
10.1007/s12298-017-0502-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Maize is an important crop for billions of people as food, feed, and industrial raw material. It is a prime driver of the global agricultural economy as well as the livelihoods of millions of farmers. Genetic interventions, such as breeding, hybridization and transgenesis have led to increased productivity of this crop in the last 100 years. The technique of genome editing is the latest advancement in genetics. Genome editing can be used for targeted deletions, additions, and corrections in the genome, all aimed at genetic enhancement of crops. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) system is a recent genome editing technique that is considered simple, precise, robust and the most revolutionary. This review summarizes the current state of the art and predicts future directions in the use of the CRISPR/Cas9 tool in maize crop improvement.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 50 条
  • [21] Advances in therapeutic CRISPR/Cas9 genome editing
    Savic, Natasa
    Schwank, Gerald
    TRANSLATIONAL RESEARCH, 2016, 168 : 15 - 21
  • [22] A glance at genome editing with CRISPR–Cas9 technology
    Antara Barman
    Bornali Deb
    Supriyo Chakraborty
    Current Genetics, 2020, 66 : 447 - 462
  • [23] Translating CRISPR/Cas9 genome editing into therapeutics
    Barnes, T. M.
    HUMAN GENE THERAPY, 2016, 27 (11) : A140 - A141
  • [24] Efficient Mitochondrial Genome Editing by CRISPR/Cas9
    Jo, Areum
    Ham, Sangwoo
    Lee, Gum Hwa
    Lee, Yun-Il
    Kim, SangSeong
    Lee, Yun-Song
    Shin, Joo-Ho
    Lee, Yunjong
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [25] CRISPR/Cas9: Transcending the Reality of Genome Editing
    Chira, Sergiu
    Gulei, Diana
    Hajitou, Amin
    Zimta, Alina-Andreea
    Cordelier, Pierre
    Berindan-Neagoe, Ioana
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2017, 7 : 211 - 222
  • [26] Delivery of CRISPR/Cas9 for therapeutic genome editing
    Xu, Xiaojie
    Wan, Tao
    Xin, Huhu
    Li, Da
    Pan, Hongming
    Wu, Jun
    Ping, Yuan
    JOURNAL OF GENE MEDICINE, 2019, 21 (07):
  • [27] Genome editing with AAV using CRISPR/Cas9
    Wilson, J. M.
    HUMAN GENE THERAPY, 2016, 27 (11) : A18 - A18
  • [28] CRISPR/Cas9 editing of the genome for cancer modeling
    Guernet, Alexis
    Grumolato, Luca
    METHODS, 2017, 121 : 130 - 137
  • [29] Spatial control of in vivo CRISPR–Cas9 genome editing via nanomagnets
    Haibao Zhu
    Linlin Zhang
    Sheng Tong
    Ciaran M. Lee
    Harshavardhan Deshmukh
    Gang Bao
    Nature Biomedical Engineering, 2019, 3 : 126 - 136
  • [30] New Insights into the Therapeutic Applications of CRISPR/Cas9 Genome Editing in Breast Cancer
    Ahmed, Munazza
    Daoud, Grace Hope
    Mohamed, Asmaa
    Harati, Rania
    GENES, 2021, 12 (05)