Voronovskaya type results for Bernstein-Chlodovsky operators preserving e-2x

被引:19
|
作者
Acar, Tuncer [1 ]
Cappelletti Montano, Mirella [2 ]
Garrancho, Pedro [3 ]
Leonessa, Vita [4 ]
机构
[1] Selcuk Univ, Dept Math, Selcuklu, Konya, Turkey
[2] Univ Bari Aldo Moro, Dept Math, Bari, Italy
[3] Univ Jaen, Dept Math, Jaen, Spain
[4] Univ Basilicata, Dept Math Comp Sci & Econ, Potenza, Italy
关键词
Positive operators; Modified Bernstein-Chlodovsky operators; Voronovskaya type theorem; Saturation;
D O I
10.1016/j.jmaa.2020.124307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we continue the study of certain Bernstein-Chlodovsky operators B-n* preserving the exponential function e(-2x) (x >= 0), recently introduced in [4]. In particular, we prove some Voronovskaya type theorems and we deduce some properties of the B-n*'s, such as saturation results. We also compare this new class of operators with the classical Bernstein-Chlodovsky ones, proving that the operators B-n* provide better approximation results for certain functions. Published by Elsevier Inc.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Voronovskaya Type Results and Operators Fixing Two Functions
    Acu, Ana Maria
    Maduta, Alexandra-Ioana
    Rasa, Ioan
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (03) : 395 - 410
  • [22] QUANTITATIVE VORONOVSKAYA TYPE RESULTS FOR A SEQUENCE OF STANCU TYPE OPERATORS
    Agrawal, P. N.
    Acu, Ana-Maria
    Bhardwaj, Neha
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1519 - 1532
  • [23] A Voronovskaya type theorem associated to geometric series of Bernstein- Durrmeyer operators
    Garoiu, Stefan-Lucian
    CARPATHIAN JOURNAL OF MATHEMATICS, 2025, 41 (02) : 351 - 360
  • [24] Voronovskaya-type Results for Positive Linear Operators of Exponential Type and their Derivatives
    Holhos, Adrian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) : 1839 - 1861
  • [25] Bound-Preserving Operators and Bernstein Type Inequalities
    Dimiter Dryanov
    Richard Fournier
    Computational Methods and Function Theory, 2004, 2 (2) : 397 - 414
  • [26] Bernstein-Jacobi-type operators preserving derivatives
    Lara-Velasco, David
    Perez, Teresa E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [27] Voronovskaya-type Results for Positive Linear Operators of Exponential Type and their Derivatives
    Adrian Holhoş
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 1839 - 1861
  • [28] Quantitative q-Voronovskaya and q-Gruss-Voronovskaya-type results for q-Szasz operators
    Acar, Tuncer
    GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (04) : 459 - 468
  • [29] BERNSTEIN-DURRMEYER TYPE OPERATORS PRESERVING LINEAR FUNCTIONS
    Gupta, Vijay
    Duman, Oktay
    MATEMATICKI VESNIK, 2010, 62 (04): : 259 - 264
  • [30] On Bernstein-Chlodowsky Type Operators Preserving Exponential Functions
    Ozsarac, Firat
    Aral, Ali
    Karsli, Harun
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 121 - 138