Comparison of location-scale and matrix factorization batch effect removal methods on gene expression datasets

被引:0
|
作者
Renard, Emilie [1 ]
Absil, R-A. [1 ]
机构
[1] Catholic Univ Louvain, ICTEAM Inst, B-1348 Louvain, Belgium
来源
2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2017年
关键词
CROSS-PLATFORM NORMALIZATION; MICROARRAY; ADJUSTMENT; PREDICTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Merging gene expression datasets is a simple way to increase the number of samples in an analysis. However experimental and data processing conditions, which are proper to each dataset or batch, generally influence the expression values and can hide the biological effect of interest. It is then important to normalize the bigger merged dataset, as failing to adjust for those batch effects may adversely impact statistical inference. Batch effect removal methods are generally based on a location-scale approach, however less widespread methods based on matrix factorization have also been proposed. We investigate on breast cancer data how those batch effect removal methods improve (or possibly degrade) the performance of simple classifiers. Our results indicate that the matrix factorization approach would deserve greater attention, as it gives results at least as good as common location-scale methods, and even significantly better results in specific cases.
引用
收藏
页码:1530 / 1537
页数:8
相关论文
共 16 条
  • [1] Simultaneous Non-Negative Matrix Factorization for Multiple Large Scale Gene Expression Datasets in Toxicology
    Lee, Clare M.
    Mudaliar, Manikhandan A. V.
    Haggart, D. R.
    Wolf, C. Roland
    Miele, Gino
    Vass, J. Keith
    Higham, Desmond J.
    Crowther, Daniel
    PLOS ONE, 2012, 7 (12):
  • [2] Batch effect removal methods for microarray gene expression data integration: a survey
    Lazar, Cosmin
    Meganck, Stijn
    Taminau, Jonatan
    Steenhoff, David
    Coletta, Alain
    Molter, Colin
    Weiss-Solis, David Y.
    Duque, Robin
    Bersini, Hugues
    Nowe, Ann
    BRIEFINGS IN BIOINFORMATICS, 2013, 14 (04) : 469 - 490
  • [3] A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data
    Luo, J.
    Schumacher, M.
    Scherer, A.
    Sanoudou, D.
    Megherbi, D.
    Davison, T.
    Shi, T.
    Tong, W.
    Shi, L.
    Hong, H.
    Zhao, C.
    Elloumi, F.
    Shi, W.
    Thomas, R.
    Lin, S.
    Tillinghast, G.
    Liu, G.
    Zhou, Y.
    Herman, D.
    Li, Y.
    Deng, Y.
    Fang, H.
    Bushel, P.
    Woods, M.
    Zhang, J.
    PHARMACOGENOMICS JOURNAL, 2010, 10 (04): : 278 - 291
  • [4] A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data
    J Luo
    M Schumacher
    A Scherer
    D Sanoudou
    D Megherbi
    T Davison
    T Shi
    W Tong
    L Shi
    H Hong
    C Zhao
    F Elloumi
    W Shi
    R Thomas
    S Lin
    G Tillinghast
    G Liu
    Y Zhou
    D Herman
    Y Li
    Y Deng
    H Fang
    P Bushel
    M Woods
    J Zhang
    The Pharmacogenomics Journal, 2010, 10 : 278 - 291
  • [5] Comparison of batch adjustment methods for the analysis of gene expression microarray data
    Gao, M.
    Baty, F.
    Schumacher, M.
    Brutsche, M.
    SWISS MEDICAL WEEKLY, 2008, 138 : 33S - 33S
  • [6] Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
    Kim, Mi Hyeon
    Seo, Hwa Jeong
    Joung, Je-Gun
    Kim, Ju Han
    BMC BIOINFORMATICS, 2011, 12
  • [7] A Comparative Study of Two Matrix Factorization Methods Applied to the Classification of Gene Expression Data
    Nikulin, Vladimir
    Huang, Tian-Hsiang
    McLachlan, Geoffrey J.
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 618 - 621
  • [8] Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
    Mi Hyeon Kim
    Hwa Jeong Seo
    Je-Gun Joung
    Ju Han Kim
    BMC Bioinformatics, 12
  • [9] An empirical comparison of dimensionality reduction methods for classifying gene and protein expression datasets
    Lee, George
    Rodriguez, Carlos
    Madabhushi, Arlant
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PROCEEDINGS, 2007, 4463 : 170 - +
  • [10] Comparison of Batch Effect Removal Methods for High Dimensional Mass Cytometry Data
    Suwalska, Aleksandra
    du Plessis-Burger, Nelita
    van der Spuy, Gian
    Polanska, Joanna
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, 2022, : 399 - 410