External-Internal Attention for Hyperspectral Image Super-Resolution

被引:4
|
作者
Guo, Zhiling [1 ]
Xin, Jingwei [1 ]
Wang, Nannan [1 ]
Li, Jie [2 ]
Gao, Xinbo [3 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Superresolution; Image reconstruction; Hyperspectral imaging; Spatial resolution; Convolution; Correlation; Computational modeling; External-internal attention (EIA); hyperspectral image (HSI); spherical locality sensitive hashing (SLSH); super-resolution (SR); FUSION;
D O I
10.1109/TGRS.2022.3207230
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, hyperspectral image (HSI) super-resolution (SR) has made significant progress by leveraging convolution neural networks. Existing methods with spectral or spatial attention, which only consider the spectral similarity or pixel-pixel similarity, ignore sample-sample correlations and sparsity. Therefore, based on the fusion of HSI and multispectral image, we propose a new HSI SR model with external-internal attention (EIA). Instead of considering a single sample, external attention module is employed to exploit the incorporating correlations between different samples to get a better feature representation. In addition, an internal attention module based on nonlocal operation is designed to explore the long-range dependencies information. Particularly, oriented to high mapping precision and low computational cost inference, spherical locality sensitive hashing (LSH) is used to divide features into different hash buckets so that every query point is calculated in the hash bucket assigned to it, rather than based a weight sum of features across all positions. The sequential EIA greatly improves the generalization ability and robustness of the model by modeling at the dataset level and at the sample level. Extensive experiments are conducted on five widely used datasets in comparison with state-of-the-art models, demonstrating the advantage of the method we proposed.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Synthetic Data Pretraining for Hyperspectral Image Super-Resolution
    Aiello, Emanuele
    Agarla, Mirko
    Valsesia, Diego
    Napoletano, Paolo
    Bianchi, Tiziano
    Magli, Enrico
    Schettini, Raimondo
    IEEE ACCESS, 2024, 12 : 65024 - 65031
  • [32] Deep Recursive Network for Hyperspectral Image Super-Resolution
    Wei, Wei
    Nie, Jiangtao
    Li, Yong
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 1233 - 1244
  • [33] Deep Intra Fusion for Hyperspectral Image Super-Resolution
    Hu, Jing
    Chen, Huilin
    Zhao, Minghua
    Li, Yunsong
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2663 - 2666
  • [34] A Truncated Matrix Decomposition for Hyperspectral Image Super-Resolution
    Liu, Jianjun
    Wu, Zebin
    Xiao, Liang
    Sun, Jun
    Yan, Hong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 8028 - 8042
  • [35] Deep Intra Fusion for Hyperspectral Image Super-Resolution
    School of Computer Science and Engineering, Xi'an University of Technology, Xi'an
    710048, China
    不详
    710071, China
    Dig Int Geosci Remote Sens Symp (IGARSS), 2020, (2663-2666):
  • [36] Image super-resolution via channel attention and spatial attention
    Lu, Enmin
    Hu, Xiaoxiao
    APPLIED INTELLIGENCE, 2022, 52 (02) : 2260 - 2268
  • [37] Image super-resolution via channel attention and spatial attention
    Enmin Lu
    Xiaoxiao Hu
    Applied Intelligence, 2022, 52 : 2260 - 2268
  • [38] A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution
    Liu, Denghong
    Li, Jie
    Yuan, Qiangqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7711 - 7725
  • [39] A Diffusion Model-Assisted Multiscale Spectral Attention Network for Hyperspectral Image Super-Resolution
    He, Kaiqi
    Cai, Yiheng
    Peng, Shengjun
    Tan, Meiling
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 8612 - 8625
  • [40] Enhanced Autoencoders With Attention-Embedded Degradation Learning for Unsupervised Hyperspectral Image Super-Resolution
    Gao, Lianru
    Li, Jiaxin
    Zheng, Ke
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61