An Improved Numerical Algorithm for the Fractional Differential Equations and Its Application in the Fractional-Order Nonlinear Systems

被引:0
|
作者
Wu, Xiang-Jun [1 ]
Liu, Bao-Qiang [2 ]
机构
[1] Henan Univ, Coll Software, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Comp & Informat Engn, Kaifeng 475004, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Fractional order; Improved numerical algorithm; Variationaliteration; Synchronization; VARIATIONAL ITERATION METHOD; CHAOS; DYNAMICS; SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an improved numerical algorithm for the fractional differential equations is proposed based on the variational iteration method. Using the improved numerical scheme, we investigate a new fractional-order hyperchaotic system, and find that hyperchaos does exist in the new fractional-order four-dimensional system with order less than 4. The lowest order we find to yield hyperchaos is 3.46 in this new fractional-order system. The existence of two positive Lyapunov exponents further verifies our results. Numerical results show that the proposed method has a faster speed and more accurate comparing with the traditional predictor-corrector algorithm. Based on the stability theory of the fractional-order system, a nonlinear controller is constructed to achieve synchronization fora class of nonlinear fractional-order systems using the pole placement technique. The nonlinear control method can synchronize two different fractional-order hyperchaotic systems. This synchronization scheme which is simple and theoretically rigorous enables synchronization of fractional-order hyperchaotic systems to be achieved in a systematic way and does not need to compute the conditional Lyapunov exponents. Simulation results are given to validate the effectiveness of the proposed synchronization method.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 50 条