Operator m-convex functions

被引:4
|
作者
Rooin, Jamal [1 ]
Alikhani, Akram [1 ,2 ]
Moslehian, Mohammad Sal [3 ]
机构
[1] IASBS, Dept Math, Zanjan 4513766731, Iran
[2] TMRG, Mashhad, Iran
[3] Ferdowsi Univ Mashhad, CEAAS, Dept Pure Math, POB 1159, Mashhad 91775, Iran
关键词
Jensen inequality; operator m-convex; Choi-Davis-Jensen inequality; Jensen-Mercer inequality; Jensen operator functional; JENSENS INEQUALITY; MERCERS TYPE; REFINEMENTS;
D O I
10.1515/gmj-2017-0045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to present a comprehensive study of operator m-convex functions. Let m epsilon [0, 1], and J = [0, b] for some b epsilon R or J = [0, infinity). A continuous function phi: J -> R is called operator mconvex if for any t epsilon [0, 1] and any self-adjoint operators A, B epsilon B(H), whose spectra are contained in J, we have phi(tA + m(1 -t) B) <= t phi(A) + m(1 -t) phi(B). We first generalize the celebrated Jensen inequality for continuous m-convex functions and Hilbert space operators and then use suitable weight functions to give some weighted refinements. Introducing the notion of operator m-convexity, we extend the Choi-Davis-Jensen inequality for operator m-convex functions. We also present an operator version of the Jensen-Mercer inequality for m-convex functions and generalize this inequality for operator m-convex functions involving continuous fields of operators and unital fields of positive linear mappings. Employing the Jensen-Mercer operator inequality for operator m-convex functions, we construct the m-Jensen operator functional and obtain an upper bound for it.
引用
收藏
页码:93 / 107
页数:15
相关论文
共 50 条
  • [21] Hessian measures in the class of m-convex (m - cv) functions
    Ismoilov, M. B.
    Sharipov, R. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES, 2024, 115 (03): : 93 - 100
  • [22] Maximal Functions and the Dirichlet Problem in the Class of m-convex Functions
    Sadullaev, Azimbay
    Sharipov, Rasulbek
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2024, 17 (04): : 519 - 527
  • [23] On new Fejer type inequalities for m-convex and quasi convex functions
    Yildiz, Cetin
    Ozdemir, M. Ern
    TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02): : 325 - 333
  • [24] INEQUALITIES VIA GENERALIZED BETA m-CONVEX FUNCTIONS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Safdar, Farhat
    JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 9 (03): : 61 - 77
  • [25] INTEGRAL INEQUALITIES VIA log m-CONVEX FUNCTIONS
    Noor, M. A.
    Noor, K., I
    Safdar, F.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (04): : 1155 - 1166
  • [26] Harmonic functions operating on contractions in m-convex algebras
    El Kinani, A.
    Topological Algebras and Applications, 2007, 427 : 143 - 150
  • [27] A new characterization of M-convex set functions by substitutability
    Farooq, R
    Tamura, A
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 2004, 47 (01) : 18 - 24
  • [28] SANDWICH TYPE RESULTS FOR m-CONVEX REAL FUNCTIONS
    Lara, Teodoro
    Rosales, Edgar
    ANNALES MATHEMATICAE SILESIANAE, 2021, 35 (02) : 250 - 259
  • [29] Jensen-type inequalities for m-convex functions
    Bosch, Paul
    Quintana, Yamilet
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    OPEN MATHEMATICS, 2022, 20 (01): : 946 - 958
  • [30] Hadamard Type Inequalities for m-convex and (α, m)-convex Functions via Fractional Integrals
    Ardic, Merve Avci
    Ekinci, Alper
    Akdemir, Ahmet Ocak
    Ozdemir, M. Emin
    6TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2017), 2018, 1926