Li-rod based muon ionization cooling channel

被引:1
|
作者
Zolkin, T. [1 ]
Skrinsky, A. N. [2 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[2] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
关键词
D O I
10.1103/PhysRevSTAB.15.043501
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A muon ionization cooling channel based on lithium rods (Li-rod) has been under consideration since the middle of the 1980s. Features of muon beam motion in such a channel are discussed, namely, an influence of nonparaxiality of motion and transverse-longitudinal coupling. Most simulations of muon beam cooling were performed using the specially developed software LYRICS (lithium rod ionization cooling simulation); a comparison between its results and the predictions of a linear model serves both to examine the simulation code and to determine the contribution of nonparaxiality to the beam motion. For numerical examples, we used muons around 200 MeV total energy since such energy is close to optimal. The idea of the inclusion of a symplectic (nondissipative) emittance exchanger to the cooling channel, which allows one to cool in all degrees of freedom, is introduced. The appropriate beam parameters for emittance exchange procedure and their dependence on transverse emittance and beam longitudinal parameters are discussed.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Status of MICE, the international Muon Ionization Cooling Experiment
    Sandstroem, R.
    NEUTRINO FACTORIES, SUPERBEAMS AND BETABEAMS, 2008, 981 : 107 - 111
  • [32] Transverse emittance reduction in muon beams by ionization cooling
    Heidt, C.
    Hanson, G.G.
    Coney, L.R.
    Sanders, D.A.
    Cremaldi, L.M.
    Torun, Y.
    Snopok, P.
    Rajaram, D.
    Mohayai, T.A.
    Kaplan, D.M.
    Hanlet, P.
    Freemire, B.
    Rubinov, P.
    Popovic, M.
    Neuffer, D.
    Liu, A.
    Bowring, D.
    Bross, A.D.
    Adey, D.
    Witte, H.
    Palmer, M.
    Virostek, S.
    Prestemon, S.
    Luo, T.
    Li, D.
    Lambert, A.
    Gourlay, S.
    DeMello, A.
    Nebrensky, J.J.
    Kyberd, P.
    Gardener, R.B.S.
    Ellis, M.
    Wilbur, S.
    Smith, P.J.
    Pec, V.
    Overton, E.
    Langlands, J.
    Hodgson, P.
    Booth, C.N.
    Cobb, J.H.
    Uchida, M.A.
    Middleton, S.
    Franchini, P.
    Dobbs, A.
    Cooke, P.
    Gamet, R.
    Young, A.R.
    Whyte, C.G.
    Ronald, K.
    Dick, A.J.
    Nature Physics, 2024, 20 (10) : 1558 - 1563
  • [33] Muon ionization cooling experiment step-vi
    Rajaram, D.
    Snopok, P.
    IPAC 2013: Proceedings of the 4th International Particle Accelerator Conference, 2013, : 1502 - 1504
  • [34] Hybrid methods for muon accelerator simulations with ionization cooling
    Kunz, J.
    Snopok, P.
    Berz, M.
    Makino, K.
    JOURNAL OF INSTRUMENTATION, 2018, 13
  • [35] Status of the international Muon Ionization Cooling Experiment (MICE)
    Zisman, Michael S.
    2007 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-11, 2007, : 2240 - 2242
  • [36] The Reconstruction Software for the Muon Ionization Cooling Experiment Trackers
    Dobbs, A.
    Long, K.
    Santos, E.
    Adey, D.
    Hanlet, P.
    Heidt, C.
    20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6, 2014, 513
  • [37] Helical six-dimensional muon ionization cooling channel with gas-filled RF cavities
    Yonehara, K.
    JOURNAL OF INSTRUMENTATION, 2018, 13
  • [38] Charge Recombination in the Muon Collider Cooling Channel
    Fernow, R. C.
    Palmer, R. B.
    ADVANCED ACCELERATOR CONCEPTS, 2012, 1507 : 831 - 836
  • [39] Mice: The international muon ionization cooling experement: Phase space cooling measurement
    Hart, T.
    2007 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-11, 2007, : 1762 - 1764
  • [40] MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement
    Hart, T. L.
    NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS, 2010, 1222 : 459 - 462