A Peptidomimetic Antibiotic Interacts with the Periplasmic Domain of LptD from Pseudomonas aeruginosa

被引:66
|
作者
Andolina, Gloria [1 ,5 ]
Bencze, Laszlo-Csaba [1 ,6 ]
Zerbe, Katja [1 ]
Mueller, Maik [2 ]
Steinmann, Jessica [1 ]
Kocherla, Harsha [1 ]
Mondal, Milon [1 ]
Sobek, Jens [4 ]
Moehle, Kerstin [1 ]
Malojcic, Goran [3 ,7 ]
Wollscheid, Bernd [2 ]
Robinson, John A. [1 ]
机构
[1] Univ Zurich, Chem Dept, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] ETH, Dept Hlth Sci & Technol, Inst Mol Syst Biol, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland
[3] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
[4] Funct Genom Ctr Zurich, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[5] Univ Hong Kong, Dept Chem, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[6] Babes Bolyai Univ, Dept Chem, Cluj Napoca 400084, Romania
[7] Goldfinch Bio, 215 First St,Fourth Floor, Cambridge, MA 02142 USA
基金
瑞士国家科学基金会;
关键词
OUTER-MEMBRANE; LIPOPOLYSACCHARIDE TRANSPORT; ESCHERICHIA-COLI; STRUCTURAL BASIS; MIMETICS; COMPLEX; LPS;
D O I
10.1021/acschembio.7b00822
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The outer membrane (OM) in Gram-negative bacteria is an asymmetric bilayer with mostly lipopolysaccharide (LPS) molecules in the outer leaflet. During OM biogenesis, new LPS molecules are transported from their site of assembly on the inner membrane to the OM by seven LPS transport proteins (LptA-G). The complex formed between the integral beta-barrel OM protein LptD and the lipoprotein LptE is responsible for transporting LPS from the periplasmic side of the OM to its final location on the cell surface. Because of its essential function in many Gram-negative bacteria, the LPS transport pathway is an interesting target for the development of new antibiotics. A family of macrocyclic peptidomimetics was discovered recently that target LptD and inhibit LPS transport specifically in Pseudomonas spp. The related molecule Murepavadin is in clinical development for the treatment of life-threatening infections caused by P. aeruginosa. To characterize the interaction of these antibiotics with LptD from P. aeruginosa, we characterized the binding site by cross-linking to a photolabeling probe. We used a hypothesis-free mass spectrometry-based proteomic approach to provide evidence that the antibiotic cross-links to the periplasmic segment of LptD, containing a beta-jellyroll domain and an N-terminal insert domain characteristic of Pseudomonas spp. Binding of the antibiotic to the periplasmic segment is expected to block LPS transport, consistent with the proposed mode of action and observed specificity of these antibiotics. These insights may prove valuable for the discovery of new antibiotics targeting the LPS transport pathway in other Gram-negative bacteria.
引用
收藏
页码:666 / 675
页数:10
相关论文
共 50 条
  • [11] NMR assignments of the GacS histidine-kinase periplasmic detection domain from Pseudomonas aeruginosa PAO1
    Ahmad Ali-Ahmad
    Olivier Bornet
    Firas Fadel
    Yves Bourne
    Florence Vincent
    Christophe Bordi
    Françoise Guerlesquin
    Corinne Sebban-Kreuzer
    Biomolecular NMR Assignments, 2017, 11 : 25 - 28
  • [12] NMR assignments of the GacS histidine-kinase periplasmic detection domain from Pseudomonas aeruginosa PAO1
    Ali-Ahmad, Ahmad
    Bornet, Olivier
    Fadel, Firas
    Bourne, Yves
    Vincent, Florence
    Bordi, Christophe
    Guerlesquin, Francoise
    Sebban-Kreuzer, Corinne
    BIOMOLECULAR NMR ASSIGNMENTS, 2017, 11 (01) : 25 - 28
  • [13] The main aminopeptidase from Pseudomonas aeruginosa PAO1 is a periplasmic enzyme
    Fricke, B
    Hippe, S
    Jensch, T
    Peschke, E
    Scherer, G
    Schierhorn, A
    EUROPEAN JOURNAL OF CELL BIOLOGY, 1997, 72 : 161 - 161
  • [14] 1.2 Å resolution crystal structure of the periplasmic aminotransferase PvdN from Pseudomonas aeruginosa
    Drake, Eric J.
    Gulick, Andrew M.
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2016, 72 : 403 - 408
  • [15] ANTIBIOTIC RESISTANCE OF PSEUDOMONAS AERUGINOSA
    Lokocova, K.
    Masak, J.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY (ICCT), 2017, : 42 - 46
  • [16] The periplasmic chaperone Skp prevents misfolding of the secretory lipase A from Pseudomonas aeruginosa
    Papadopoulos, Athanasios
    Busch, Max
    Reiners, Jens
    Hachani, Eymen
    Baeumers, Miriam
    Berger, Julia
    Schmitt, Lutz
    Jaeger, Karl-Erich
    Kovacic, Filip
    Smits, Sander H. J.
    Kedrov, Alexej
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [17] Crystal structure of PA0833 periplasmic domain from Pseudomonas aeruginosa reveals an unexpected enlarged peptidoglycan binding pocket
    Lin, Xi
    Ye, Fei
    Lin, Sheng
    Yang, Fanli
    Chen, Zimin
    Cao, Yu
    Chen, Zhujun
    Gu, Jiang
    Lu, Guangwen
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 511 (04) : 875 - 881
  • [18] Deprivation of the Periplasmic Chaperone SurA Reduces Virulence and Restores Antibiotic Susceptibility of Multidrug-Resistant Pseudomonas aeruginosa
    Klein, Kristina
    Sonnabend, Michael S.
    Frank, Lisa
    Leibiger, Karolin
    Franz-Wachtel, Mirita
    Macek, Boris
    Trunk, Thomas
    Leo, Jack C.
    Autenrieth, Ingo B.
    Schuetz, Monika
    Bohn, Erwin
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [19] PtrA Is a Periplasmic Protein Involved in Cu Tolerance in Pseudomonas aeruginosa
    Elsen, Sylvie
    Ragno, Michel
    Attree, Ina
    JOURNAL OF BACTERIOLOGY, 2011, 193 (13) : 3376 - 3378
  • [20] Lytic transglycosylase Slt of Pseudomonas aeruginosa as a periplasmic hub protein
    Avila-Cobian, Luis F.
    De Benedetti, Stefania
    Hoshino, Hidekazu
    Nguyen, Van T.
    El-Araby, Amr M.
    Sader, Safaa
    Hu, Daniel D.
    Cole, Sara L.
    Kim, Choon
    Fisher, Jed F.
    Champion, Matthew M.
    Mobashery, Shahriar
    PROTEIN SCIENCE, 2024, 33 (07)