The phase-field method in optimal design

被引:0
|
作者
Bourdin, Blaise [1 ]
Chambolle, Antonin [2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Ecole Polytech, CNRS, CMAP, UMR 7641, F-91128 Palaiseau, France
关键词
phase-field; multi-physics optimal design; perimeter penalization;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We describe the phase-field method, a new approach to optimal design originally introduced in Bourdin and Chambolle (2000, 2003). It is based on the penalization of the variation of the properties of the designs, and its variational approximation (in the sense of Gamma-convergence. It uses a smooth function, the phase-field, to represent all materials involved. We describe our approach, and detail its application to two problems.
引用
收藏
页码:207 / +
页数:3
相关论文
共 50 条
  • [41] Simulation of Dendrite Remelting via the Phase-Field Method
    Han, Xing
    Li, Chang
    Zhan, Hao
    Li, Shuchao
    Liu, Jiabo
    Kong, Fanhong
    Wang, Xuan
    COATINGS, 2024, 14 (11)
  • [42] A phase-field method for elastic mechanics with large deformation
    Xu, Jiacheng
    Hu, Dan
    Zhou, Han
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471
  • [43] A phase-field method for elastic mechanics with large deformation
    Xu, Jiacheng
    Hu, Dan
    Zhou, Han
    Journal of Computational Physics, 2022, 471
  • [44] A novel classification method combining phase-field and DNN
    Wang, Jian
    Han, Ziwei
    Jiang, Wenjing
    Kim, Junseok
    PATTERN RECOGNITION, 2023, 142
  • [45] Construction of seamless immersed boundary phase-field method
    Nishida, Hidetoshi
    Kohashi, Souichi
    Tanaka, Mitsuru
    COMPUTERS & FLUIDS, 2018, 164 : 41 - 49
  • [46] Phase-field modeling by the method of lattice Boltzmann equations
    Fakhari, Abbas
    Rahimian, Mohammad H.
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [47] Multigrain phase-field simulation in ferroelectrics with phase coexistences: An improved phase-field model
    Fan, Ling
    Werner, Walter
    Subotic, Swen
    Schneider, Daniel
    Hinterstein, Manuel
    Nestler, Britta
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 203
  • [48] State-constrained optimal control of phase-field equations with obstacle
    Zheng, Jiashan
    Liu, Junjun
    Liu, Hao
    BOUNDARY VALUE PROBLEMS, 2013,
  • [49] State-constrained optimal control for the phase-field transition system
    Morosanu, C.
    Wang, G.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (3-4) : 379 - 403
  • [50] Optimal control of a phase-field model using proper orthogonal decomposition
    Volkwein, S
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 (02): : 83 - 97