A haemodynamic brain-computer interface based on real-time classification of near infrared spectroscopy signals during motor imagery and mental arithmetic

被引:37
|
作者
Stangl, Matthias [1 ,2 ]
Bauernfeind, Guenther [3 ]
Kurzmann, Juergen [1 ]
Scherer, Reinhold [3 ]
Neuper, Christa [1 ,3 ]
机构
[1] Graz Univ, Dept Psychol, Sect Neuropsychol, A-8010 Graz, Austria
[2] German Ctr Neurodegenerat Dis DZNE, D-39120 Magdeburg, Germany
[3] Graz Univ Technol, Inst Knowledge Discovery, Lab Brain Comp Interfaces, A-8010 Graz, Austria
关键词
brain-computer interface (BCI); near infrared (NIR) spectroscopy; motor imagery; mental arithmetic; real-time classification; PREFRONTAL CORTEX ACTIVITY; CEREBRAL-BLOOD-FLOW; OXIDATIVE-METABOLISM; OXYGENATION; COMMUNICATION; PERFORMANCE; SYSTEM; FMRI; BCI;
D O I
10.1255/jnirs.1048
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Over the past decade, an increasing number of studies have investigated near infrared (NIR) spectroscopy for signal acquisition in brain-computer interface (BCI) systems. However, although a BCI relies on classifying brain signals in real-time, the majority of previous studies did not perform real-time NIR spectroscopy signal classification but derived knowledge about the feasibility of NIR spectroscopy for BCI purposes from offline analyses. The present study investigates whether NIR spectroscopy signals evoked by two different mental tasks (i.e. motor imagery and mental arithmetic) can be classified in real-time in order to control a NIR-BCI application. Furthermore, since this is the first study that attempts to distinguish between the haemodynamic responses to these two tasks, we aimed to investigate whether this task-combination is feasible for controlling a NIR-BCI. Twelve healthy participants were asked to control a moving ball on a computer screen by performing motor imagery and mental arithmetic tasks. The real-time classification of their task-specific NIR spectroscopy signals yielded accuracy rates ranging from 45% up to 93%. Offline analyses across all participants showed that both tasks evoked different haemodynamic responses in prefrontal and sensorimotor cortex areas. On the one hand, these results demonstrate the considerable potential of NIR spectroscopy for BCI signal acquisition and the feasibility of the applied mental tasks for NIR-BCI control. On the other hand, since the classification accuracy showed an unsatisfactory stability across measurement sessions, we conclude that further investigations and progress in methodological issues are needed and we discuss further steps that have to be taken until it is conceivable to implement a real-time capable NIR-BCI that works with sufficient accuracy across a large group of individuals.
引用
收藏
页码:157 / 171
页数:15
相关论文
共 50 条
  • [41] Brain-Computer Interface using Near-Infrared Spectroscopy for Rehabilitation
    Yanagisawa, Kazuki
    Asaka, Kyohei
    Sawai, Hideyuki
    Tsunashima, Hitoshi
    Nagaoka, Takafumi
    Tsujii, Takeo
    Sakatani, Kaoru
    INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2010), 2010, : 2248 - 2253
  • [42] Motor imagery classification by means of source analysis for brain-computer interface applications
    Qin, Lei
    Ding, Lei
    He, Bin
    JOURNAL OF NEURAL ENGINEERING, 2004, 1 (03) : 135 - 141
  • [43] A Hybrid Transfer Learning Approach for Motor Imagery Classification in Brain-Computer Interface
    Wang, Xuying
    Yang, Rui
    Huang, Mengjie
    Yang, Zhengni
    Wan, Zitong
    2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (IEEE LIFETECH 2021), 2021, : 496 - 500
  • [44] High Classification Accuracy of a Motor Imagery Based Brain-Computer Interface for Stroke Rehabilitation Training
    Irimia, Danut C.
    Oliner, Rupert
    Poboroniuc, Marian S.
    Ignat, Bogdan E.
    Guger, Christoph
    FRONTIERS IN ROBOTICS AND AI, 2018, 5
  • [45] The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface
    Subasi, Abdulhamit
    Qaisar, Saeed Mian
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [46] Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain-computer interface
    Neuper, Christa
    Scherer, Reinhold
    Wriessnegger, Selina
    Pfurtscheller, Gert
    CLINICAL NEUROPHYSIOLOGY, 2009, 120 (02) : 239 - 247
  • [47] An Empirical Mode Decomposition Based Filtering Method for Classification of Motor-Imagery EEG Signals for Enhancing Brain-Computer Interface
    Gaur, Pramod
    Pachori, Ram Bilas
    Wang, Hui
    Prasad, Girijesh
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [48] Evaluation of classification performance of functional near infrared spectroscopy signals during movement execution for developing a brain-computer interface application using optimal channels
    Janani, A.
    Sasikala, M.
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2018, 26 (04) : 209 - 221
  • [49] Bipolar electrode selection for a motor imagery based brain-computer interface
    Lou, Bin
    Hong, Bo
    Gao, Xiaorong
    Gao, Shangkai
    JOURNAL OF NEURAL ENGINEERING, 2008, 5 (03) : 342 - 349
  • [50] Design of electrode layout for motor imagery based brain-computer interface
    Wang, Y.
    Hong, B.
    Gao, X.
    Gao, S.
    ELECTRONICS LETTERS, 2007, 43 (10) : 557 - 558