A New Scheme for the Simulation of Microscale Flow and Dispersion in Urban Areas by Coupling Large-Eddy Simulation with Mesoscale Models

被引:12
|
作者
Li, Haifeng [1 ]
Cui, Guixiang [1 ]
Zhang, Zhaoshun [1 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupling scheme; Turbulence database; Inner layer; Outer layer; Small-scale turbulence; BOUNDARY-LAYER; CFD MODEL; ATMOSPHERIC-ENVIRONMENT; POLLUTANT DISPERSION; INFLOW TURBULENCE; WEATHER RESEARCH; STREET CANYON; FIELD; TRANSPORT; LES;
D O I
10.1007/s10546-017-0323-5
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A coupling scheme is proposed for the simulation of microscale flow and dispersion in which both the mesoscale field and small-scale turbulence are specified at the boundary of a microscale model. The small-scale turbulence is obtained individually in the inner and outer layers by the transformation of pre-computed databases, and then combined in a weighted sum. Validation of the results of a flow over a cluster of model buildings shows that the inner- and outer-layer transition height should be located in the roughness sublayer. Both the new scheme and the previous scheme are applied in the simulation of the flow over the central business district of Oklahoma City (a point source during intensive observation period 3 of the Joint Urban 2003 experimental campaign), with results showing that the wind speed is well predicted in the canopy layer. Compared with the previous scheme, the new scheme improves the prediction of the wind direction and turbulent kinetic energy (TKE) in the canopy layer. The flow field influences the scalar plume in two ways, i.e. the averaged flow field determines the advective flux and the TKE field determines the turbulent flux. Thus, the mean, root-mean-square and maximum of the concentration agree better with the observations with the new scheme. These results indicate that the new scheme is an effective means of simulating the complex flow and dispersion in urban canopies.
引用
收藏
页码:145 / 170
页数:26
相关论文
共 50 条
  • [41] A LARGE-EDDY SIMULATION SCHEME FOR TURBULENT REACTING FLOWS
    GAO, F
    OBRIEN, EE
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (06): : 1282 - 1284
  • [42] Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation
    Li, Xian-Xiang
    Britter, Rex
    Norford, Leslie K.
    ATMOSPHERIC ENVIRONMENT, 2016, 144 : 47 - 59
  • [43] Dispersion of a passive plume in an idealised urban convective boundary layer: A large-eddy simulation
    Cai, XM
    ATMOSPHERIC ENVIRONMENT, 2000, 34 (01) : 61 - 72
  • [44] LARGE-EDDY SIMULATION FOR URBAN MICRO-METEOROLOGY
    Xie, Zhengtong
    Castro, Ian P.
    JOURNAL OF HYDRODYNAMICS, 2006, 18 (03) : 259 - 264
  • [45] Modelling of pollutant dispersion in urban street canyons by means of a large-eddy simulation approach
    Chabni, A
    Le Quere, P
    Tenaud, C
    Laatar, H
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 1998, 20 (1-4) : 88 - 95
  • [46] Large-eddy simulation for urban micro-meteorology
    Xie, Zhengtong
    Castro, Ian P.
    PROCEEDINGS OF THE CONFERENCE OF GLOBAL CHINESE SCHOLARS ON HYDRODYNAMICS, 2006, : 259 - 264
  • [47] Large-eddy simulation for urban micro-meteorology
    Xie Z.
    Castro I.P.
    Journal of Hydrodynamics, 2006, 18 (Suppl 1) : 254 - 259
  • [48] Direct Numerical Simulation and Large-Eddy Simulation of Supersonic Channel Flow
    Taieb, David
    Ribert, Guillaume
    JOURNAL OF PROPULSION AND POWER, 2013, 29 (05) : 1064 - 1075
  • [49] Dispersion in stable boundary layers using large-eddy simulation
    Kemp, JR
    Thomson, DJ
    ATMOSPHERIC ENVIRONMENT, 1996, 30 (16) : 2911 - 2923
  • [50] LARGE-EDDY SIMULATION OF DISPERSION IN THE CONVECTIVE BOUNDARY-LAYER
    HENN, DS
    SYKES, RI
    ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1992, 26 (17): : 3145 - 3159