Precipitation Strengthening in Ni-Cu Alloys Fabricated Using Wire Arc Additive Manufacturing Technology

被引:15
|
作者
Marenych, Olexandra [1 ,2 ]
Kostryzhev, Andrii [1 ]
Shen, Chen [1 ,2 ]
Pan, Zengxi [1 ,2 ]
Li, Huijun [1 ,2 ]
van Duin, Stephen [1 ,2 ]
机构
[1] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Northfields Ave, Wollongong, NSW 2500, Australia
[2] Def Mat Technol Ctr, Hawthorn, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
Ni-Cu alloys; wire arc additive manufacturing; microstructure characterisation; mechanical properties; wear resistance; TITANIUM; STEEL; TI;
D O I
10.3390/met9010105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two Ni-Cu alloys, Monel K500 and FM60, with various contents of Ti, Mn, Al, Fe and C were deposited in the form of plates on a metal base plate using wire arc additive manufacturing technology. Three deposition speeds have been applied: 300, 400 and 500 mm/min. To modify the as-welded microstructure and properties, the deposited walls/plates have been subjected to two heat treatment procedures: annealing at 1100 degrees C for 15 min, slow cooling to 610 degrees C, ageing at this temperature for 8 h and either (i) air cooling to room temperature or (ii) slow cooling to 480 degrees C, ageing at this temperature for 8 h and air cooling to room temperature. The microstructure characterisation and mechanical properties testing have been conducted for each of the 18 chemistry/processing conditions. The dependences of the precipitate's parameters (size, number density and chemistry), mechanical properties and wear resistance on the alloy composition, deposition speed and heat treatment have been obtained. In Monel K500, the precipitates were mainly of the TiC/TiCN type, and in FM60, they were of the MnS and TiAlMgO types. Monel K500 has shown higher hardness, strength, toughness and wear resistance in all studied conditions. Ageing at 610 degrees C improved properties in both alloys following the precipitation of new particles. Ageing at 480 degrees C could result in a properties loss if the particle coarsening (decrease in number density) took place.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Review of the Development Status of Wire Arc Additive Manufacturing Technology
    Chen, Xiaoxuan
    Shang, Xin
    Zhou, Zirong
    Chen, Sheng-Gui
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2022, 2022
  • [32] Wire Arc Additive Manufacturing of Al-Cu Alloy-Grain Refinement, Strengthening and Thermal Simulation
    Atosh Kumar Sinha
    Krishna P. Yagati
    Silicon, 2024, 16 : 441 - 461
  • [33] Investigation of Microstructure and Fracture Mechanism of Al-5.0Mg Alloys Fabricated by Wire Arc Additive Manufacturing
    Yanfei Geng
    Irina Panchenko
    Xizhang Chen
    Yurii Ivanov
    Sergey Konovalov
    Journal of Materials Engineering and Performance, 2021, 30 : 7406 - 7416
  • [34] Investigation of Microstructure and Fracture Mechanism of Al-5.0Mg Alloys Fabricated by Wire Arc Additive Manufacturing
    Geng, Yanfei
    Panchenko, Irina
    Chen, Xizhang
    Ivanov, Yurii
    Konovalov, Sergey
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (10) : 7406 - 7416
  • [35] Wire Arc Additive Manufacturing of Al-Cu Alloy-Grain Refinement, Strengthening and Thermal Simulation
    Sinha, Atosh Kumar
    Yagati, Krishna P.
    SILICON, 2024, 16 (01) : 441 - 461
  • [36] Properties of TiC-reinforced Cu-W alloys prepared by wire arc additive manufacturing
    Shao, Yuerui
    Liu, Yue
    Wu, Dongting
    Song, Zhongcai
    Guo, Fuqiang
    Zou, Yong
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 115
  • [37] Microstructure, hardness, and electrical resistivity of Al-Cu alloy fabricated via wire arc additive manufacturing
    Kannan, A. Rajesh
    Rajkumar, V.
    Vasudevan, Srinivasan Vinju
    Jerome, Peter
    Oh, Tae Hwan
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [38] Challenges associated with the wire arc additive manufacturing (WAAM) of aluminum alloys
    Thapliyal, Shivraman
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)
  • [39] A Review on Wire Arc Additive Manufacturing of Magnesium Alloys: Wire Preparation, Defects and Properties
    Li, Yi
    Yin, Siqi
    Zhang, Guangzong
    Wang, Changfeng
    Liu, Xiao
    Guan, Renguo
    METALS AND MATERIALS INTERNATIONAL, 2024, 30 (12) : 3243 - 3267
  • [40] Research Progress and Prospects of CMT-based Wire Arc Additive Manufacturing Technology for Titanium Alloys
    Yi Hao
    Huang Rufeng
    Cao Huajun
    Liu Menglin
    Zhou Jin
    CHINA SURFACE ENGINEERING, 2021, 34 (03) : 1 - 15