Precipitation Strengthening in Ni-Cu Alloys Fabricated Using Wire Arc Additive Manufacturing Technology

被引:15
|
作者
Marenych, Olexandra [1 ,2 ]
Kostryzhev, Andrii [1 ]
Shen, Chen [1 ,2 ]
Pan, Zengxi [1 ,2 ]
Li, Huijun [1 ,2 ]
van Duin, Stephen [1 ,2 ]
机构
[1] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Northfields Ave, Wollongong, NSW 2500, Australia
[2] Def Mat Technol Ctr, Hawthorn, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
Ni-Cu alloys; wire arc additive manufacturing; microstructure characterisation; mechanical properties; wear resistance; TITANIUM; STEEL; TI;
D O I
10.3390/met9010105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two Ni-Cu alloys, Monel K500 and FM60, with various contents of Ti, Mn, Al, Fe and C were deposited in the form of plates on a metal base plate using wire arc additive manufacturing technology. Three deposition speeds have been applied: 300, 400 and 500 mm/min. To modify the as-welded microstructure and properties, the deposited walls/plates have been subjected to two heat treatment procedures: annealing at 1100 degrees C for 15 min, slow cooling to 610 degrees C, ageing at this temperature for 8 h and either (i) air cooling to room temperature or (ii) slow cooling to 480 degrees C, ageing at this temperature for 8 h and air cooling to room temperature. The microstructure characterisation and mechanical properties testing have been conducted for each of the 18 chemistry/processing conditions. The dependences of the precipitate's parameters (size, number density and chemistry), mechanical properties and wear resistance on the alloy composition, deposition speed and heat treatment have been obtained. In Monel K500, the precipitates were mainly of the TiC/TiCN type, and in FM60, they were of the MnS and TiAlMgO types. Monel K500 has shown higher hardness, strength, toughness and wear resistance in all studied conditions. Ageing at 610 degrees C improved properties in both alloys following the precipitation of new particles. Ageing at 480 degrees C could result in a properties loss if the particle coarsening (decrease in number density) took place.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing
    Kannan, A. Rajesh
    Kumar, S. Mohan
    Pramod, R.
    Shanmugam, N. Siva
    Vishnukumar, M.
    Channabasavanna, S. G.
    MATERIALS LETTERS, 2022, 308
  • [2] Precipitation behaviors and the related strengthening mechanism in 2219 Al alloy fabricated by wire arc additive manufacturing
    Gong, Xiangpeng
    Cheng, Xu
    Zhang, Daoyang
    Chen, Hongyan
    Nie, Baohua
    Li, Zhuo
    Zhang, Jikui
    Tang, Haibo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [3] Precipitation phenomena and strengthening mechanism of Al-Cu alloys deposited by in-situ rolled wire-arc additive manufacturing
    Wang, Zuheng
    Gao, Yifeng
    Huang, Jialin
    Wu, Chuandong
    Wang, Guilan
    Liu, Jing
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 855
  • [4] Wire and arc additive manufacturing for strengthening of metallic components
    Dahaghin, H.
    Motavalli, M.
    Moshayedi, H.
    Zahrai, S. M.
    Ghafoori, E.
    THIN-WALLED STRUCTURES, 2024, 203
  • [5] Comparative effect of Mn/Ti solute atoms and TiC/Ni3(Al,Ti) nano-particles on work hardening behaviour in Ni-Cu alloys fabricated by wire arc additive manufacturing
    Marenych, O. O.
    Kostryzhev, A. G.
    Pan, Z.
    Li, H.
    van Duin, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 753 : 262 - 275
  • [6] Wire Arc Additive Manufacturing of Aluminium Alloys
    Ouellet, Theo
    Croteau, Maxime
    Bois-Brochu, Alexandre
    Levesque, Julie
    15TH INTERNATIONAL ALUMINIUM CONFERENCE, INALCO 2023, 2023,
  • [7] Wire-Arc Additive Manufacturing Using Ni1Cu Weathering Steel
    Zhang, Haitao
    Wu, Suisong
    Shi, Rumeng
    Guo, Chun
    CRYSTAL RESEARCH AND TECHNOLOGY, 2021, 56 (12)
  • [8] Modulation of characteristic zones in NiTi alloys fabricated via wire arc additive manufacturing
    Zhang, Mugong
    Li, Xinzhi
    Fang, Xuewei
    Wang, Binglin
    Chen, Xinxian
    Jiao, Genghao
    Huang, Ke
    MATERIALS CHARACTERIZATION, 2024, 209
  • [9] Microstructure and properties of Ni-Ti-Cu alloy fabricated in situ by treble-wire arc additive manufacturing
    Yu, Peng
    Liang, Zhetao
    Chen, Xinya
    Ma, Hengsheng
    Shao, Mingfu
    Han, Jian
    Tian, Yinbao
    VIRTUAL AND PHYSICAL PROTOTYPING, 2025, 20 (01)
  • [10] Fatigue strengthening of damaged steel members using wire arc additive manufacturing
    Ghafoori, E.
    Dahaghin, H.
    Diao, C.
    Pichler, N.
    Li, L.
    Mohri, M.
    Ding, J.
    Ganguly, S.
    Williams, S.
    ENGINEERING STRUCTURES, 2023, 284