Influence of Crystalline and Shape Anisotropy on Electrochromic Modulation in Doped Semiconductor Nanocrystals

被引:31
|
作者
Heo, Sungyeon [1 ]
Cho, Shin Hum [1 ]
Dahlman, Clayton J. [2 ]
Agrawal, Ankit [3 ]
Milliron, Delia J. [1 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[3] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
来源
ACS ENERGY LETTERS | 2020年 / 5卷 / 08期
基金
美国国家科学基金会;
关键词
SURFACE-PLASMON RESONANCE; COLORATION EFFICIENCY; TUNGSTEN BRONZE; DEVICES; NANOPARTICLES; NANORODS; DEFECTS; SIZE;
D O I
10.1021/acsenergylett.0c01236
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Localized surface plasmon resonance (LSPR) modulation appearing in the near-infrared range in doped semiconductor nanocrystals improves electrochromic performance. Although crystalline and shape anisotropies influence LSPR spectra, studies of their impact on electrochromic modulation are lacking. Here, we study how crystalline anisotropy in hexagonal cesium-doped tungsten oxide nanorods and nanoplatelets affects essential metrics of electrochromic modulation-coloration efficiency (CE) and volumetric capacity-using electrolyte cations of different sizes (tetrabutylammonium, sodium, and lithium) as structurally sensitive electrochemical probes. The CE of nanorod films is higher than that of nanoplatelets in all of the electrolytes owing to the low effective mass along the crystalline c-axis. When using sodium cations, which diffuse through one-dimensional hexagonal tunnels, the electrochemical capacity is significantly greater for platelets than for nanorods. This difference is explained by the hexagonal tunnel sites being more accessible in platelets than in nanorods. Our work sheds light on the role of shape and crystalline anisotropy in charge capacity and CE, both of which contribute to overall modulation.
引用
收藏
页码:2662 / 2670
页数:9
相关论文
共 50 条
  • [41] Cleavage anisotropy of boron doped cracks in crystalline silicon
    Liu, B.
    Zhang, Y. A.
    Li, Y. J.
    Wang, X. F.
    Yue, Y. J.
    MICROELECTRONICS RELIABILITY, 2022, 138
  • [42] Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals
    Dinh, Cao-Thang
    Nguyen, Thanh-Dinh
    Kleitz, Freddy
    Do, Trong-On
    ACS NANO, 2009, 3 (11) : 3737 - 3743
  • [43] Sterically induced shape and crystalline phase control of GaP nanocrystals
    Kim, YH
    Jun, YW
    Jun, BH
    Lee, SM
    Cheon, JW
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (46) : 13656 - 13657
  • [44] Shape evolution of single-crystalline iron oxide nanocrystals
    Cheon, JW
    Kang, NJ
    Lee, SM
    Lee, JH
    Yoon, JH
    Oh, SJ
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (07) : 1950 - 1951
  • [45] EFFECTS OF REACTION CONDITIONS ON THE SHAPE AND CRYSTALLINE STRUCTURE OF CELLULOSE NANOCRYSTALS
    Merlini, Aline
    De Souza, Vanderlei C.
    Gomes, Rose M.
    Coirolo, Andre
    Merlini, Simone
    Machado, Ricardo A. F.
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2018, 52 (5-6): : 325 - 335
  • [46] Shape dependent properties of some semiconductor and metallic nanocrystals.
    El-Sayed, MA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U297 - U297
  • [47] Decoupling Radiative and Auger Processes in Semiconductor Nanocrystals by Shape Engineering
    Zhou, Yang
    Califano, Marco
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (37): : 9155 - 9161
  • [48] Shape dependence of resonant energy transfer between semiconductor nanocrystals
    Schrier, Joshua
    Wang, Lin-Wang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (30): : 11158 - 11161
  • [49] Modulation of exciton transition in crystalline nanostructures of an organic semiconductor
    Han, Yuyan
    Cao, Liang
    Pan, Shusheng
    Xu, Xiaotao
    Han, Hui
    Xu, Faqiang
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (02) : 1326 - 1334
  • [50] Modulation of exciton transition in crystalline nanostructures of an organic semiconductor
    Yuyan Han
    Liang Cao
    Shusheng Pan
    Xiaotao Xu
    Hui Han
    Faqiang Xu
    Journal of Materials Science, 2018, 53 : 1326 - 1334