Total coloring of graphs embedded in surfaces of nonnegative Euler characteristic

被引:6
|
作者
Wang HuiJuan [1 ]
Liu Bin [2 ]
Wu JianLiang [1 ]
Wang Bing [1 ,3 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Ocean Univ China, Dept Math, Qingdao 266100, Peoples R China
[3] Zaozhuang Univ, Dept Math, Zaozhuang 277160, Peoples R China
基金
中国国家自然科学基金;
关键词
total coloring; Euler characteristic; surface; TOTAL CHROMATIC NUMBER; PLANAR GRAPHS; 4-CYCLES;
D O I
10.1007/s11425-013-4576-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph which can be embedded in a surface of nonnegative Euler characteristic. In this paper, it is proved that the total chromatic number of G is Delta(G) + 1 if Delta(G) >= 9, where Delta(G) is the maximum degree of G.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 50 条
  • [31] EULER CHARACTERISTIC SURFACES
    Beltramo, Gabriele
    Skraba, Primoz
    Andreeva, Rayna
    Sarkar, Rik
    Giarratano, Ylenia
    Bernabeu, Miguel O.
    FOUNDATIONS OF DATA SCIENCE, 2021, : 505 - 536
  • [32] Vertex arboricity of graphs embedded in a surface of non-negative Euler characteristic
    Teng, Wenshun
    Wang, Huijuan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (06)
  • [33] Hearing Euler characteristic of graphs
    Lawniczak, Michal
    Kurasov, Pavel
    Bauch, Szymon
    Bialous, Malgorzata
    Yunko, Vitalii
    Sirko, Leszek
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [34] Euler Characteristic of Polyhedral Graphs
    Pirvan-Moldovan, Atena
    Diudea, Mircea V.
    CROATICA CHEMICA ACTA, 2016, 89 (04) : 471 - 479
  • [35] Euler Characteristic of Graphs and Networks
    Lawniczak, M.
    Kurasov, P.
    Bauch, S.
    Bialous, M.
    Sirko, L.
    ACTA PHYSICA POLONICA A, 2021, 139 (03) : 323 - 327
  • [36] Improper choosability of graphs of nonnegative characteristic
    Chen, Yongzhu
    Zhu, Weiyi
    Wang, Weifan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (08) : 2073 - 2078
  • [37] Improper coloring of graphs on surfaces
    Choi, Ilkyoo
    Esperet, Louis
    JOURNAL OF GRAPH THEORY, 2019, 91 (01) : 16 - 34
  • [38] ON THE TOTAL COLORING OF PLANAR GRAPHS
    BORODIN, OV
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 394 : 180 - 185
  • [39] Total coloring of the prismatic graphs
    Mohan, S.
    Somasundaram, K.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (03)
  • [40] TOTAL COLORING OF CERTAIN GRAPHS
    Muthuramakrishnan, D.
    Jayaraman, G.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2021, 27 (01): : 31 - 38