Canonical bases for the equivariant cohomology and K-theory rings of symplectic toric manifolds

被引:2
|
作者
Pabiniak, M. [1 ]
Sabatini, S. [1 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
关键词
HAMILTONIAN G-SPACES; CONVEXITY;
D O I
10.4310/JSG.2018.v16.n4.a8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a symplectic toric manifold acted on by a torus T. In this work we exhibit an explicit basis for the equivariant K-theory ring K-T(M) which is canonically associated to a generic component of the moment map. We provide a combinatorial algorithm for computing the restrictions of the elements of this basis to the fixed point set; these, in turn, determine the ring structure of K-T(M). The construction is based on the notion of local index at a fixed point, similar to that introduced by Guillemin and Kogan in [GK]. We apply the same techniques to exhibit an explicit basis for the equivariant cohomology ring H-T(M; Z) which is canonically associated to a generic component of the moment map. Moreover we prove that the elements of this basis coincide with some well-known sets of classes: the equivariant Poincare duals to certain smooth flow up submanifolds, and also the canonical classes introduced by Goldin and Tolman in [GT], which exist whenever the moment map is index increasing.
引用
收藏
页码:1117 / 1165
页数:49
相关论文
共 50 条
  • [41] Equivariant representable K-theory
    Emerson, Heath
    Meyer, Ralf
    JOURNAL OF TOPOLOGY, 2009, 2 (01) : 123 - 156
  • [42] THE SPECTRUM OF EQUIVARIANT K-THEORY
    BOJANOWSKA, A
    MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) : 1 - 19
  • [43] EQUIVARIANT K-THEORY FOR CURVES
    ELLINGSRUD, G
    LONSTED, K
    DUKE MATHEMATICAL JOURNAL, 1984, 51 (01) : 37 - 46
  • [44] EQUIVARIANT CONNECTIVE K-THEORY
    Karpenko, Nikita A.
    Merkurjev, Alexander S.
    JOURNAL OF ALGEBRAIC GEOMETRY, 2022, 31 (01) : 181 - 204
  • [45] Equivariant cohomology and K-theory of Bott-Samelson varieties and flag varieties
    Willems, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2004, 132 (04): : 569 - 589
  • [46] THE K-THEORY OF TORIC VARIETIES
    Cortinas, G.
    Haesemeyer, C.
    Walker, Mark E.
    Weibel, C.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (06) : 3325 - 3341
  • [47] Discriminants and toric K-theory
    Horja, R. Paul
    Katzarkov, Ludmil
    ADVANCES IN MATHEMATICS, 2024, 453
  • [48] EQUIVARIANT COMMUNICATION K-THEORY
    DAVYDOV, AA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1991, (06): : 90 - 93
  • [49] THE EQUIVARIANT K-THEORY AND COBORDISM RINGS OF DIVISIVE WEIGHTED PROJECTIVE SPACES
    Harada, Megumi
    Holm, Tara S.
    Ray, Nigel
    Williams, Gareth
    TOHOKU MATHEMATICAL JOURNAL, 2016, 68 (04) : 487 - 513
  • [50] EQUIVARIANT ALGEBRAIC K-THEORY
    FIEDOROWICZ, Z
    HAUSCHILD, H
    MAY, JP
    LECTURE NOTES IN MATHEMATICS, 1982, 967 : 23 - 80