Superstructures, modulations and approximants in quasiperiodic tilings

被引:1
|
作者
Lück, R
Scheffer, M
机构
[1] MPI Met Forsch, D-70174 Stuttgart, Germany
[2] TU Chemnitz, Inst Phys Mat & Flussigk, Chemnitz, Germany
关键词
D O I
10.1080/00150190108225099
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Concerning different variants of quasicrystalline phases we present quasiperiodic tilings which combine properties of superstructures with those of modulated structures or nanostructured domains of approximants.
引用
收藏
页码:351 / 355
页数:5
相关论文
共 50 条
  • [41] Higher-dimensional crystallography of N-fold quasiperiodic tilings
    Deloudi, Sofia
    Steurer, Walter
    ACTA CRYSTALLOGRAPHICA SECTION A, 2012, 68 : 266 - 277
  • [42] Monte Carlo investigation of the eight-state Potts model on quasiperiodic tilings
    Ledue, D.
    Landau, D.P.
    Teillet, J.
    Journal of Applied Physics, 1998, 83 (11 pt 2):
  • [43] Critical behavior of majority vote model on two-dimensional quasiperiodic tilings
    Alves, T. F. A.
    Lima, F. W. S.
    Macedo-Filho, A.
    Alves, G. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [44] Monte Carlo investigation of the eight-state Potts model on quasiperiodic tilings
    Ledue, D
    Landau, DP
    Teillet, J
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (11) : 6305 - 6307
  • [45] Wavefunctions, quantum diffusion, and scaling exponents in golden-mean quasiperiodic tilings
    Thiem, Stefanie
    Schreiber, Michael
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (07)
  • [46] Vacancy ordered phases in Al-Cu-Ni as quasiperiodic superlattice approximants
    Subramaniam, A
    PHILOSOPHICAL MAGAZINE, 2003, 83 (06) : 667 - 675
  • [47] Rational approximants to 5, 8 and 7-fold two-dimensional tilings
    Subramaniam, A
    Ramakrishnan, K
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2003, 218 (09): : 590 - 596
  • [48] Inflation rules of square-triangle tilings: from approximants to dodecagonal liquid quasicrystals
    Zeng, X
    Ungar, G
    PHILOSOPHICAL MAGAZINE, 2006, 86 (6-8) : 1093 - 1103
  • [49] Gaussian orthogonal ensemble for quasiperiodic tilings without unfolding: r-value statistics
    Grimm, Uwe
    Romer, Rudolf A.
    PHYSICAL REVIEW B, 2021, 104 (06)
  • [50] Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry
    Shutov, A. V.
    Maleev, A. V.
    Zhuravlev, V. G.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2010, 66 : 427 - 437