共 50 条
Magnetic Rotating Flow of a Hybrid Nano-Materials Ag-MoS2 and Go-MoS2 in C2H6O2-H2O Hybrid Base Fluid over an Extending Surface Involving Activation Energy: FE Simulation
被引:37
|作者:
Ali, Bagh
[1
]
Naqvi, Rizwan Ali
[2
]
Hussain, Dildar
[3
]
Aldossary, Omar M.
[4
]
Hussain, Sajjad
[5
]
机构:
[1] Northwestern Polytech Univ, Sch Sci, Dept Appl Math, 127 West Youyi Rd, Xian 710072, Peoples R China
[2] Sejong Univ, Dept Intelligent Mechatron, Seoul 100083, South Korea
[3] Korea Inst Adv Study KIAS, Sch Computat Sci, 85 Hoegiro Dongdaemun Gu, Seoul 02455, South Korea
[4] King Saud Univ, Coll Sci, Dept Phys & Astron, POB 2455, Riyadh 11451, Saudi Arabia
[5] Nanyang Technol Univ, Sch Aerosp & Mech Engn, Singapore 639798, Singapore
来源:
关键词:
magnetohydrodynamic;
hybrid nanofluid;
finite element method;
shape factor;
rotating frame;
BOUNDARY-LAYER-FLOW;
STAGNATION-POINT FLOW;
HEAT-TRANSFER;
STRETCHING SURFACE;
THERMAL-CONDUCTIVITY;
NATURAL-CONVECTION;
NANOFLUID;
RADIATION;
TRANSPORT;
NANOPARTICLES;
D O I:
10.3390/math8101730
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Numeric simulations are performed for a comparative study of magnetohydrodynamic (MHD) rotational flow of hybrid nanofluids (MoS2-Ag/ethyleneglycol-water (50-50%) and MoS2-Go/ethyleneglycol-water (50-50%)) over a horizontally elongated plane sheet. The principal objective is concerned with the enhancement of thermal transportation. The three-dimensional formulation governing the conservation of mass, momentum, energy, and concentration is transmuted into two-dimensional partial differentiation by employing similarity transforms. The resulting set of equations (PDEs) is then solved by variational finite element procedure coded in Matlab script. An intensive computational run is carried out for suitable ranges of the particular quantities of influence. The primary velocity component decreases monotonically and the magnitude of secondary velocity component diminishes significantly when magnetic parameter, rotational parameter, and unsteadiness parameter are incremented. Both the primary and secondary velocities are smaller in values for the hybrid phase Ag-MoS2 than that of hybrid phase Go-MoS2 but the nanoparticle concentration and temperature are higher for hybrid phase Ag-MoS2. The increased values of parameters for thermophoresis, Brownian motion, shape factor, and volume fraction of phi 2 made significant improvement in the temperature of the two phases of nano liquids. Results are also computed for the coefficients of skin friction(x, y-directions), Nusselt number, and Sherwood number. The present findings manifest reasonable comparison to their existing counterparts. Some of the practical engineering applications of the present analysis may be found in high-temperature nanomaterial processing technology, crystal growing, extrusion processes, manufacturing and rolling of polymer sheets, academic research, lubrication processes, and polymer industry.
引用
收藏
页码:1 / 22
页数:22
相关论文