Aligning 3D Models to RGB-D Images of Cluttered Scenes

被引:0
|
作者
Gupta, Saurabh [1 ]
Arbelaez, Pablo [2 ]
Girshick, Ross [3 ]
Malik, Jitendra [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Los Andes, Bogota, Colombia
[3] Microsoft Res, Redmond, WA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of this work is to represent objects in an RGB-D scene with corresponding 3D models from a library. We approach this problem by first detecting and segmenting object instances in the scene and then using a convolutional neural network (CNN) to predict the pose of the object. This CNN is trained using pixel surface normals in images containing renderings of synthetic objects. When tested on real data, our method outperforms alternative algorithms trained on real data. We then use this coarse pose estimate along with the inferred pixel support to align a small number of prototypical models to the data, and place into the scene the model that fits best. We observe a 48% relative improvement in performance at the task of 3D detection over the current state-of-the-art [34], while being an order of magnitude faster.
引用
收藏
页码:4731 / 4740
页数:10
相关论文
共 50 条
  • [31] Using spin images for efficient object recognition in cluttered 3D scenes
    Johnson, AE
    Hebert, M
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (05) : 433 - 449
  • [32] A novel unsupervised 3D skeleton detection in RGB-D images for video surveillance
    Cheng, Shyi-Chyi
    Hsiao, Kuei-Fang
    Yang, Chen-Kuei
    Hsiao, Po-Fu
    Yu, Wan-Hsuan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (23-24) : 15829 - 15857
  • [33] Estimating the 3D center point of an object with Kinect sensor RGB-D images
    Armenio, Gustavo Fardo
    Fabro, Joao Alberto
    Tognella, Renzo de Rosa
    Conter, Felipe Pierre
    de Oliveira, Marlon Vaz
    Silva, Everson de Souza
    2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, : 478 - 483
  • [34] 3D Spatial Layout Extraction of Indoor Images Using RGB-D Data
    Yapicilar, Caglar
    Arica, Nafiz
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [35] Simultaneous 3D Object Recognition and Pose Estimation Based on RGB-D Images
    Tsai, Chi-Yi
    Tsai, Shu-Hsiang
    IEEE ACCESS, 2018, 6 : 28859 - 28869
  • [36] A 3D Object Detection and Pose Estimation Pipeline Using RGB-D Images
    He, Ruotao
    Rojas, Juan
    Guan, Yisheng
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 1527 - 1532
  • [37] A novel unsupervised 3D skeleton detection in RGB-D images for video surveillance
    Shyi-Chyi Cheng
    Kuei-Fang Hsiao
    Chen-Kuei Yang
    Po-Fu Hsiao
    Wan-Hsuan Yu
    Multimedia Tools and Applications, 2020, 79 : 15829 - 15857
  • [38] Comparison of RGB-D sensors for 3D reconstruction
    da Silva Neto, Jose Gomes
    da Lima Silva, Pedro Jorge
    Figueredo, Filipe
    Xavier Natario Teixeira, Joao Marcelo
    Teichrieb, Veronica
    2020 22ND SYMPOSIUM ON VIRTUAL AND AUGMENTED REALITY (SVR 2020), 2020, : 252 - 261
  • [39] Editorial RGB-D Sensors and 3D Reconstruction
    Lv, Zhihan
    Mauri, Jaime Lloret
    Song, Houbing
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11751 - 11752
  • [40] 3D Reconstruction with Mirrors and RGB-D Cameras
    Akay, Abdullah
    Akgul, Yusuf Sinan
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3, 2014, : 325 - 334