Multiscale model of micro curing residual stress evolution in carbon fiber-reinforced thermoset polymer composites

被引:12
|
作者
Hui, Xinyu [1 ]
Xu, Yingjie [1 ,2 ]
Zhang, Weihong [1 ]
机构
[1] Northwestern Polytech Univ, State IJR Ctr Aerosp Design & Addit Mfg, Sch Mech Engn, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Mech Engn, Shaanxi Engn Lab Aerosp Struct Design & Applicat, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
CFRP; curing residual stress; multiscale modeling; finite element method; CURE SIMULATION; SHRINKAGE; STRAIN;
D O I
10.1007/s11465-020-0590-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, the micro curing residual stresses of carbon fiber-reinforced thermoset polymer (CFRP) composites are evaluated using a multiscale modeling method. A thermochemical coupling model is developed at the macroscale level to obtain the distributions of temperature and degree of cure. Meanwhile, a representative volume element model of the composites is established at the microscale level. By introducing the information from the macroscale perspective, the curing residual stresses are calculated using the microscale model. The evolution of curing residual stresses reveals the interaction mechanism of fiber, matrix, and interphase period during the curing process. Results show that the curing residual stresses mostly present a tensile state in the matrix and a compressive state in the fiber. Furthermore, the curing residual stresses at different locations in the composites are calculated and discussed. Simulation results provide an important guideline for the analysis and design of CFRP composite structures.
引用
收藏
页码:475 / 483
页数:9
相关论文
共 50 条
  • [21] Stress transfer and damage evolution simulations of fiber-reinforced polymer-matrix composites
    Li, Hongzhou
    Jia, Yuxi
    Mamtimin, Geni
    Jiang, Wei
    An, Lijia
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 425 (1-2): : 178 - 184
  • [22] A model for the abrasive wear of fiber-reinforced polymer composites
    Yen, BK
    Dharan, CKH
    WEAR, 1996, 195 (1-2) : 123 - 127
  • [23] CARBON FIBER-REINFORCED COMPOSITES - EFFECT OF FIBER SURFACE ON POLYMER PROPERTIES
    KO, YS
    FORSMAN, WC
    DZIEMIANOWICZ, TS
    POLYMER ENGINEERING AND SCIENCE, 1982, 22 (13): : 805 - 814
  • [24] Multiscale Analysis on Electrical Properties of Carbon Fiber-Reinforced Wood Composites
    Zhu, Xiaolong
    Sun, Liping
    BIORESOURCES, 2015, 10 (02): : 2392 - 2405
  • [25] Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: A review
    Diez-Pascual, Ana M.
    Naffakh, Mohammed
    Marco, Carlos
    Gomez-Fatou, Marian A.
    Ellis, Gary J.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2014, 18 (02): : 62 - 80
  • [26] An ANN-based concurrent multiscale damage evolution model for hierarchical fiber-reinforced composites
    Han, Xiaojian
    Huang, Kai
    Zheng, Tao
    Zhou, Jindi
    Liu, Hongsen
    Li, Zhixing
    Zhang, Li
    Guo, Licheng
    COMPOSITES SCIENCE AND TECHNOLOGY, 2025, 259
  • [27] Multiscale modeling of fracture in fiber-reinforced composites
    Gonzalez, Carlos
    LLorca, Javier
    ACTA MATERIALIA, 2006, 54 (16) : 4171 - 4181
  • [28] STRATEGIC REINFORCEMENT OF HYBRID CARBON FIBER-REINFORCED POLYMER COMPOSITES
    BRADLEY, PD
    HARRIS, SJ
    JOURNAL OF MATERIALS SCIENCE, 1977, 12 (12) : 2401 - 2410
  • [29] Life cycle assessment of carbon fiber-reinforced polymer composites
    Sujit Das
    The International Journal of Life Cycle Assessment, 2011, 16 : 268 - 282
  • [30] Life cycle assessment of carbon fiber-reinforced polymer composites
    Das, Sujit
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2011, 16 (03): : 268 - 282