The Stability Inequality for Ricci-Flat Cones

被引:10
|
作者
Hall, Stuart [1 ]
Haslhofer, Robert [2 ]
Siepmann, Michael [3 ]
机构
[1] Univ Buckingham, Dept Appl Comp, Buckingham, England
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
Ricci-flat cones; Stability inequality; Perelman-functional; Ricci flow; ADM-mass; METRIC-MEASURE-SPACES; CURVATURE; GEOMETRY; KAHLER; INSTABILITY; CONJECTURE; VARIETIES; PROOF; FLOW;
D O I
10.1007/s12220-012-9343-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we thoroughly investigate the stability inequality for Ricci-flat cones. Perhaps most importantly, we prove that the Ricci-flat cone over a",P (2) is stable, showing that the first stable non-flat Ricci-flat cone occurs in the smallest possible dimension. On the other hand, we prove that many other examples of Ricci-flat cones over 4-manifolds are unstable, and that Ricci-flat cones over products of Einstein manifolds and over Kahler-Einstein manifolds with h (1,1)> 1 are unstable in dimension less than 10. As results of independent interest, our computations indicate that the Page metric and the Chen-LeBrun-Weber metric are unstable Ricci shrinkers. As a final bonus, we give plenty of motivations, and partly confirm a conjecture of Tom Ilmanen relating the lambda-functional, the positive mass theorem, and the nonuniqueness of Ricci flow with conical initial data.
引用
收藏
页码:472 / 494
页数:23
相关论文
共 50 条
  • [41] Perelman's lambda-functional and the stability of Ricci-flat metrics
    Haslhofer, Robert
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 45 (3-4) : 481 - 504
  • [42] Ricci-flat Graphs with Girth Four
    Wei Hua HE
    Jun LUO
    Chao YANG
    Wei YUAN
    Hui Chun ZHANG
    ActaMathematicaSinica,EnglishSeries, 2021, (11) : 1679 - 1691
  • [43] Asymptotically cylindrical Ricci-flat manifolds
    Salur, Sema
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) : 3049 - 3056
  • [44] ON A CLASS OF RICCI-FLAT DOUGLAS METRICS
    Sevim, Esra Sengelen
    Shen, Zhongmin
    Zhao, Lili
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (06)
  • [45] A new incomplete Ricci-flat metric
    Malkovich, E. G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (05)
  • [46] A class of Ricci-flat Finsler metrics
    Ulgen, Semail
    Sevim, Esra S.
    ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 73 - 83
  • [47] Optimal coordinates for Ricci-flat conifolds
    Kroncke, Klaus
    Szabo, Aron
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [48] Perelman’s lambda-functional and the stability of Ricci-flat metrics
    Robert Haslhofer
    Calculus of Variations and Partial Differential Equations, 2012, 45 : 481 - 504
  • [49] Holonomy rigidity for Ricci-flat metrics
    Ammann, Bernd
    Kroencke, Klaus
    Weiss, Hartmut
    Witt, Frederik
    MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (1-2) : 303 - 311
  • [50] Ricci-flat and Einstein pseudoriemannian nilmanifolds
    Conti, Diego
    Rossi, Federico A.
    COMPLEX MANIFOLDS, 2019, 6 (01): : 170 - 193