Finite-connectivity systems as error-correcting codes

被引:29
|
作者
Vicente, R [1 ]
Saad, D
Kabashima, Y
机构
[1] Aston Univ, Neural Comp Res Grp, Birmingham B4 7ET, W Midlands, England
[2] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Yokohama, Kanagawa 226, Japan
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 05期
关键词
D O I
10.1103/PhysRevE.60.5352
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the performance of parity check codes using the mapping onto Ising spin systems proposed by Sourlas [Nature (London) 339, 693 (1989); Europhys. Lett. 25, 159 (1994)]. We study codes where each parity check comprises products of K bits selected from the original digital message with exactly C checks per message bit. We show, using the replica method, that these codes saturate Shannon's coding bound for K --> infinity when the code rate KIC is finite. We then examine the finite temperature case to assess the use of simulated annealing methods for decoding, study the performance of the finite K case, and extend the analysis to accommodate different types of noisy channels. The connection between statistical physics and belief propagation decoders is discussed and the dynamics of the decoding itself is analyzed. Further insight into new approaches for improving the code performance is given. [S1063-651X(99)15911-7].
引用
收藏
页码:5352 / 5366
页数:15
相关论文
共 50 条
  • [31] On the trustworthiness of error-correcting codes
    Faldum, Andreas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (12) : 4777 - 4784
  • [32] Error-correcting codes based on partial maps in finite sets
    Liu, Fenyan
    Qi, Yanfang
    Liu, Junli
    ARS COMBINATORIA, 2020, 148 : 193 - 203
  • [33] Error-correcting codes in attenuated space over finite fields
    Gao, You
    Wang, Gang
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 103 - 117
  • [34] Voting in distributed systems using error-correcting codes
    Xu, LH
    Bruck, J
    INTERNATIONAL SOCIETY FOR COMPUTERS AND THEIR APPLICATIONS 10TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS, 1997, : 438 - 443
  • [35] Quantum error-correcting codes over finite Frobenius rings
    Klappenecker, Andreas
    Lee, Sangjun
    Nemec, Andrew
    TOPOLOGICAL PHASES OF MATTER AND QUANTUM COMPUTATION, 2020, 747 : 199 - 214
  • [36] SPHERE PACKINGS AND ERROR-CORRECTING CODES
    LEECH, J
    SLOANE, NJA
    CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (04): : 718 - &
  • [37] Error-Correcting Codes for Flash Coding
    Huang, Qin
    Lin, Shu
    Abdel-Ghaffar, Khaled A. S.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) : 6097 - 6108
  • [38] Error-correcting codes in complexity theory
    Trevisan, L
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2003, 2653 : 4 - 4
  • [39] A NOTE ON SYNCHRONIZABLE ERROR-CORRECTING CODES
    MANDELBAUM, D
    INFORMATION AND CONTROL, 1968, 13 (05): : 429 - +
  • [40] NONBINARY RANDOM ERROR-CORRECTING CODES
    WOLF, JK
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (02) : 236 - +