A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter

被引:5
|
作者
Marazzi, Alfio [1 ,2 ]
Valdora, Marina [3 ,4 ]
Yohai, Victor [3 ,4 ,5 ]
Amiguet, Michael [1 ]
机构
[1] Inst Social & Prevent Med, Lausanne, Switzerland
[2] Nice Comp, Le Mont Sur Lausanne, Switzerland
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Buenos Aires, DF, Argentina
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Buenos Aires, DF, Argentina
[5] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
关键词
Generalized linear model; Conditional maximum likelihood; Negative binomial regression; Overdispersion; Robust regression; NONPARAMETRIC ANALYSIS; REGRESSION-MODEL; INFERENCE;
D O I
10.1007/s11749-018-0624-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Highly robust and efficient estimators for generalized linear models with a dispersion parameter are proposed. The estimators are based on three steps. In the first step, the maximum rank correlation estimator is used to consistently estimate the slopes up to a scale factor. The scale factor, the intercept, and the dispersion parameter are robustly estimated using a simple regression model. Then, randomized quantile residuals based on the initial estimators are used to define a region S such that observations out of S are considered as outliers. Finally, a conditional maximum likelihood (CML) estimator given the observations in S is computed. We show that, under the model, S tends to the whole space for increasing sample size. Therefore, the CML estimator tends to the unconditional maximum likelihood estimator and this implies that this estimator is asymptotically fully efficient. Moreover, the CML estimator maintains the high degree of robustness of the initial one. The negative binomial regression case is studied in detail.
引用
收藏
页码:223 / 241
页数:19
相关论文
共 50 条
  • [1] A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter
    Alfio Marazzi
    Marina Valdora
    Victor Yohai
    Michael Amiguet
    TEST, 2019, 28 : 223 - 241
  • [2] A conditional likelihood approach to residual maximum likelihood estimation in generalized linear models
    Smyth, GK
    Verbyla, AP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (03): : 565 - 572
  • [3] THE ASYMPTOTIC COVARIANCE-MATRIX OF THE MAXIMUM-LIKELIHOOD PARAMETER ESTIMATOR IN CONDITIONAL POISSON LOG-LINEAR MODELS
    BONETT, DG
    BENTLER, PM
    WOODWARD, JA
    BIOMETRICAL JOURNAL, 1986, 28 (06) : 759 - 762
  • [4] Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized Linear Models
    Awasthi, Pranjal
    Das, Abhimanyu
    Kong, Weihao
    Sen, Rajat
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [5] Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models
    Gauss M. Cordeiro
    Denise A. Botter
    Alexsandro B. Cavalcanti
    Lúcia P. Barroso
    Statistical Papers, 2014, 55 : 643 - 652
  • [6] Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models
    Cordeiro, Gauss M.
    Botter, Denise A.
    Cavalcanti, Alexsandro B.
    Barroso, Lucia P.
    STATISTICAL PAPERS, 2014, 55 (03) : 643 - 652
  • [7] CONSISTENCY AND ASYMPTOTIC NORMALITY OF THE MAXIMUM-LIKELIHOOD ESTIMATOR IN GENERALIZED LINEAR-MODELS
    FAHRMEIR, L
    KAUFMANN, H
    ANNALS OF STATISTICS, 1985, 13 (01): : 342 - 368
  • [8] Strong consistency of the maximum likelihood estimator in generalized linear and nonlinear mixed-effects models
    Nie, L.
    METRIKA, 2006, 63 (02) : 123 - 143
  • [9] Rate of strong consistency of maximum quasi-likelihood estimator in multivariate generalized linear models
    Yin, Changming
    Zhang, Hong
    Zhao, Lincheng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (19) : 3115 - 3123
  • [10] Strong Consistency of the Maximum Likelihood Estimator in Generalized Linear and Nonlinear Mixed-Effects Models
    L. Nie
    Metrika, 2006, 63 : 123 - 143