Directing Silicon-Graphene Self-Assembly as a Core/Shell Anode for High-Performance Lithium-Ion Batteries

被引:145
|
作者
Zhu, Yuanhua [1 ]
Liu, Wen [2 ]
Zhang, Xinyue [1 ]
He, Jinchao [1 ,2 ]
Chen, Jitao
Wang, Yapei [1 ]
Cao, Tingbing
机构
[1] Renmin Univ China, Dept Chem, Beijing 100872, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
关键词
FACILE SYNTHESIS; ENERGY-STORAGE; NANOPARTICLES; SHEETS; NANOCOMPOSITE; NANOSPHERES; CATHODE; GROWTH; ARRAYS; DEVICE;
D O I
10.1021/la304371d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is great interest in utilization of silicon-containing nanostructures as anode materials for lithium-ion batteries but usually limited by manufacturing cost, their intrinsic low electric conductivity, and large volume changes during cycling. Here we present a facile process to fabricate graphene-wrapped silicon nanowires (GNS@Si NWs) directed by electrostatic self-assembly. The highly conductive and mechanical flexible graphene could partially accommodate the large volume change associated with the conversion reaction and also contributed to the enhanced electronic conductivity. The as-prepared GNS@Si NWs delivered a reversible capacity of 1648 mAh.g(-1) with an initial Coulombic efficiency as high as 80%. Moreover, capacity remained 1335 mAh.g(-1) after 80 cycles at a current of 200 mA.g(-1), showing significantly improved electrochemical performance in terms of rate capability and cycling performance.
引用
收藏
页码:744 / 749
页数:6
相关论文
共 50 条
  • [21] Flexible Porous Silicon/Carbon Fiber Anode for High-Performance Lithium-Ion Batteries
    Liu, Gang
    Zhu, Xiaoyi
    Li, Xiaohua
    Jia, Dongchen
    Li, Dong
    Ma, Zhaoli
    Li, Jianjiang
    MATERIALS, 2022, 15 (09)
  • [22] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    RareMetals, 2019, 38 (03) : 199 - 205
  • [23] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Li, Jin
    Yang, Juan-Yu
    Wang, Jian-Tao
    Lu, Shi-Gang
    RARE METALS, 2019, 38 (03) : 199 - 205
  • [24] A Versatile Polymeric Precursor to High-Performance Silicon Composite Anode for Lithium-Ion Batteries
    Yang, Kai
    Yu, Zhihao
    Yu, Changcheng
    Zhu, Min
    Yang, Luyi
    Chen, Haibiao
    Pan, Feng
    ENERGY TECHNOLOGY, 2019, 7 (07)
  • [25] Metal chelation based supramolecular self-assembly enables a high-performance organic anode for lithium ion batteries
    Zhang, Guangzhao
    Wang, Hui
    Deng, Xiaolan
    Yang, Yu
    Zhang, Tian
    Wang, Jun
    Zeng, Hongbo
    Wang, Chaoyang
    Deng, Yonghong
    CHEMICAL ENGINEERING JOURNAL, 2021, 413 (413)
  • [26] Nanostructured anode materials for high-performance lithium-ion batteries
    Xie, Jingjie
    Yin, Jing
    Xu, Lan
    Ahmed, Adnan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [27] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Jun Lu
    Zhongwei Chen
    Feng Pan
    Yi Cui
    Khalil Amine
    Electrochemical Energy Reviews, 2018, 1 : 35 - 53
  • [28] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Lu, Jun
    Chen, Zhongwei
    Pan, Feng
    Cui, Yi
    Amine, Khalil
    ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (01) : 35 - 53
  • [29] Magnesium Hydride Nanoparticles Self-Assembled on Graphene as Anode Material for High-Performance Lithium-Ion Batteries
    Zhang, Baoping
    Xia, Guanglin
    Sun, Dalin
    Fang, Fang
    Yu, Xuebin
    ACS NANO, 2018, 12 (04) : 3816 - 3824
  • [30] Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries
    Tao, Huachao
    Fan, Li-Zhen
    Song, Wei-Li
    Wu, Mao
    He, Xinbo
    Qu, Xuanhui
    NANOSCALE, 2014, 6 (06) : 3138 - 3142