Semimetal-superfluid quantum phase transitions in 2D and 3D lattices with Dirac points

被引:12
|
作者
Mazzucchi, G. [1 ,2 ,3 ]
Lepori, L. [4 ,5 ,6 ,7 ]
Trombettoni, A. [2 ,8 ,9 ]
机构
[1] Univ Trento, Dipartimento Fis, I-38123 Pova, Italy
[2] SISSA, I-34136 Trieste, Italy
[3] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[4] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain
[5] Univ Strasbourg, UMR 7504, IPCMS, Strasbourg, France
[6] Univ Strasbourg, ISIS, UMR 7006, Strasbourg, France
[7] CNRS, Strasbourg, France
[8] CNR IOM DEMOCRITOS Simulat Ctr, I-34136 Trieste, Italy
[9] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy
关键词
HUBBARD-MODEL; MAGNETIC-FIELDS; SUPERCONDUCTIVITY; ATOMS; INSULATOR; FERMIONS; PHYSICS; LANDAU; GAS;
D O I
10.1088/0953-4075/46/13/134014
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the superfluid properties of attractively interacting fermions hopping in a family of 2D and 3D lattices in the presence of synthetic gauge fields having pi-flux per plaquette. The reason for such a choice is that the pi-flux cubic lattice displays Dirac points and that decreasing the hopping coefficient in a spatial direction (say, t(z)), these Dirac points are unaltered: it is then possible to study the 3D-2D interpolation towards the pi-flux square lattice. We also consider the lattice configuration providing the continuous interpolation between the 2D pi-flux square lattice and the honeycomb geometry. We investigate by a mean-field analysis the effects of interaction and dimensionality on the superfluid gap, chemical potential and critical temperature, showing that these quantities continuously vary along the patterns of interpolation. In the two-dimensional cases at zero temperature and half-filling, there is a quantum phase transition occurring at a critical (negative) interaction U-c presenting a linear critical exponent for the gap as a function of vertical bar U -U-c vertical bar. We show that in three dimensions, this quantum phase transition is again retrieved, pointing out that the critical exponent for the gap changes from 1 to 1/2 for each finite value of t(z).
引用
收藏
页数:10
相关论文
共 50 条
  • [21] 3D Dirac Plasmons in the Type-II Dirac Semimetal PtTe2
    Politano, Antonio
    Chiarello, Gennaro
    Ghosh, Barun
    Sadhukhan, Krishanu
    Kuo, Chia-Nung
    Lue, Chin Shan
    Pellegrini, Vittorio
    Agarwal, Amit
    PHYSICAL REVIEW LETTERS, 2018, 121 (08)
  • [22] 2D/3D WEB TRANSITIONS Methods and Techniques
    Deleglise, Eric
    Paul, Diponkar
    Fjeld, Morten
    WEBIST 2009: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 2009, : 294 - 298
  • [23] Terahertz studies of 2D and 3D topological transitions
    Marcinkiewicz, M.
    Teppe, F.
    Consejo, C.
    Dyakonova, N.
    Desrat, W.
    Coquillat, D.
    Ruffenach, S.
    Knap, W.
    Mikhailov, N. N.
    Dvoretskii, S. A.
    Gonzalez-Posada, F.
    Rodriguez, J-B
    Tournie, E.
    19TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON' 19), 2015, 647
  • [24] Experimental and computational analysis of 3D printed 2D lattices
    Mussini, Andrea
    Carter, Luke
    Villapun, Victor
    Cao, Emily
    Cox, Sophie
    Ginestra, Paola
    MATERIAL FORMING, ESAFORM 2024, 2024, 41 : 390 - 397
  • [25] Frustration in 2D and 3D tetrahedral-based lattices
    Elhajal, M
    Canals, B
    Lacroix, C
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 (PART I) : 379 - 380
  • [26] Crossover from 2d to 3d in anisotropic Kondo lattices
    Reyes, D.
    Continentino, M. A.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (5-9) : 829 - 830
  • [27] The inverse protein folding problem on 2D and 3D lattices
    Berman, Piotr
    DasGupta, Bhaskar
    Mubayi, Dhruv
    Sloan, Robert
    Turan, Gyorgy
    Zhang, Yi
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (6-7) : 719 - 732
  • [28] Epitaxial HfTe2 Dirac semimetal in the 2D limit
    Tsipas, Polychronis
    Pappas, Panagiotis
    Symeonidou, Evgenia
    Fragkos, Sotirios
    Zacharaki, Christina
    Xenogiannopoulou, Evangel Ia
    Siannas, Nikitas
    Dimoulas, Athanasios
    APL MATERIALS, 2021, 9 (10)
  • [29] 3D Dirac semimetal Cd3As2: A review of material properties
    Crassee, I.
    Sankar, R.
    Lee, W. -L.
    Akrap, A.
    Orlita, M.
    PHYSICAL REVIEW MATERIALS, 2018, 2 (12):
  • [30] Thermoelectric transport properties in 3D Dirac semimetal Cd3As2
    Amarnath, R.
    Bhargavi, K. S.
    Kubakaddi, S. S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (22)