Integration of confocal and atomic force microscopy images

被引:27
|
作者
Kondra, Shripad
Laishram, Jummi
Ban, Jelena [2 ]
Migliorini, Elisa [3 ]
Di Foggia, Valentina
Lazzarino, Marco [3 ,4 ]
Torre, Vincent
Ruaro, Maria Elisabetta [1 ]
机构
[1] ISAS, SISAA, I-34012 Trieste, Italy
[2] Glance Vis Technol, I-34012 Trieste, Italy
[3] CBM, I-34012 Trieste, Italy
[4] CNR INFM Lab TASC, I-34012 Trieste, Italy
关键词
Image registration; Growth cone; Atomic force microscopy; Confocal laser scanning microscopy; LIVING NEURONS; REGISTRATION; CELLS; BIOMOLECULES; WORK; AFM;
D O I
10.1016/j.jneumeth.2008.09.034
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Atomic force microscopy (AFM) provides the possibility to map the 3D structure of viewed objects with a nanometric resolution, which cannot be achieved with other imaging methods such as conventional video imaging and confocal fluorescent microscopy. Video imaging with CCD cameras can provide an analysis of biological events with a temporal and spatial resolution not possible with AFM, while confocal imaging allows the simultaneous acquisition of immunofluorescence images. In this communication we present a simple method to combine AFM and confocal images to study differentiating embryonic stem (ES) cells-derived and dorsal root ganglia (DRG) neurons in culture. Neurons were grown on coverslips with micrometric markers that allow finding and imaging the same neuron with different microscopes. AFM and confocal images were registered using conventional methods used in Computer Science. The combination of these two techniques allows relating functional properties to morphological features of imaged neurons. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 107
页数:14
相关论文
共 50 条
  • [41] Wavelet-transform processing of images in atomic force microscopy
    Rekhviashvili, SS
    TECHNICAL PHYSICS LETTERS, 2002, 28 (03) : 237 - 238
  • [42] A comparison of reconstruction methods for undersampled atomic force microscopy images
    Luo, Yufan
    Andersson, Sean B.
    NANOTECHNOLOGY, 2015, 26 (50)
  • [43] INTERPRETING SCANNING TUNNELING AND ATOMIC-FORCE MICROSCOPY IMAGES
    WHANGBO, MH
    MAGONOV, SN
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 29 - COMP
  • [44] Characterization of bituminite in Kimmeridge Clay by confocal laser scanning and atomic force microscopy
    Hackley, Paul C.
    Kus, Jolanta
    Mendonca Filho, Joao Graciano
    Czaja, Andrew D.
    Borrego, Angeles G.
    Zivotic, Dragana
    Valentine, Brett J.
    Hatcherian, Javin J.
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2022, 251
  • [45] SAMPLING PATTERN DESIGN ALGORITHM FOR ATOMIC FORCE MICROSCOPY IMAGES
    Luo, Yufan
    Andersson, Sean B.
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2109 - 2113
  • [46] Atomic force microscopy images of a pollen grain: A preliminary study
    Demanet, CM
    Sankar, KV
    SOUTH AFRICAN JOURNAL OF BOTANY, 1996, 62 (04) : 221 - 223
  • [47] Image correction for atomic force microscopy images with functionalized tips
    Neu, M.
    Moll, N.
    Gross, L.
    Meyer, G.
    Giessibl, F. J.
    Repp, J.
    PHYSICAL REVIEW B, 2014, 89 (20):
  • [48] Automatic Recognition of DNA Pliers in Atomic Force Microscopy Images
    Han, Yuexing
    Hara, Akito
    Kuzuya, Akinori
    Watanabe, Ryosuke
    Ohya, Yuichi
    Konagaya, Akihiko
    NEW GENERATION COMPUTING, 2015, 33 (03) : 253 - 270
  • [49] Wavelet-transform processing of images in atomic force microscopy
    S. Sh. Rekhviashvili
    Technical Physics Letters, 2002, 28 : 237 - 238
  • [50] Advanced Flattening Method for Scanned Atomic Force Microscopy Images
    Han, Cheolsu
    Chung, Chung Choo
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 60 (05) : L680 - L683