Forecasting Day-Ahead Traffic Flow Using Functional Time Series Approach

被引:19
|
作者
Shah, Ismail [1 ]
Muhammad, Izhar [1 ]
Ali, Sajid [1 ]
Ahmed, Saira [2 ,3 ]
Almazah, Mohammed M. A. [4 ,5 ]
Al-Rezami, A. Y. [6 ,7 ]
机构
[1] Quaid I Azam Univ, Dept Stat, Islamabad 45320, Pakistan
[2] United Nations Ind Dev Org, Islamabad 1051, Pakistan
[3] Capital Univ Sci & Technol, Directorate Sustainabil & Environm, Islamabad 44000, Pakistan
[4] King Khalid Univ, Coll Sci & Arts Muhyil, Dept Math, Muhyil 61421, Saudi Arabia
[5] Ibb Univ, Coll Sci, Dept Math & Comp, Ibb 70270, Yemen
[6] Prince Sattam Bin Abdulaziz Univ, Math Dept, Al Kharj 16278, Saudi Arabia
[7] Sanaa Univ, Dept Stat & Informat, Sanaa 1247, Yemen
关键词
traffic flow forecasting; autoregressive; functional time series; Dublin airport link road; short-term prediction; functional data analysis; ARIMA; PREDICTION;
D O I
10.3390/math10224279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nowadays, short-term traffic flow forecasting has gained increasing attention from researchers due to traffic congestion in many large and medium-sized cities that pose a serious threat to sustainable urban development. To this end, this research examines the forecasting performance of functional time series modeling to forecast traffic flow in the ultra-short term. An appealing feature of the functional approach is that unlike other methods, it provides information over the whole day, and thus, forecasts can be obtained for any time within a day. Within this approach, a Functional AutoRegressive (FAR) model is used to forecast the next-day traffic flow. For empirical analysis, the traffic flow data of Dublin airport link road, Ireland, collected at a fifteen-minute interval from 1 January 2016 to 30 April 2017, are used. The first twelve months are used for model estimation, while the remaining four months are for the one-day-ahead out-of-sample forecast. For comparison purposes, a widely used model, namely AutoRegressive Integrated Moving Average (ARIMA), is also used to obtain the forecasts. Finally, the models' performances are compared based on different accuracy statistics. The study results suggested that the functional time series model outperforms the traditional time series models. As the proposed method can produce traffic flow forecasts for the entire next day with satisfactory results, it can be used in decision making by transportation policymakers and city planners.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A Hybrid Model for Day-Ahead Price Forecasting
    Wu, Lei
    Shahidehpour, Mohammad
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (03) : 1519 - 1530
  • [32] Day-ahead forecasting approach for energy consumption of an office building using support vector machines
    Jozi, Aria
    Pinto, Tiago
    Praca, Isabel
    Vale, Zita
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1620 - 1625
  • [33] Enhancing real-time and day-ahead load forecasting accuracy with deep learning and weighed ensemble approachEnhancing real-time and day-ahead load forecasting accuracy with deep learning and weighed ensemble approach
    Zeyu Li
    Zhirui Tian
    Applied Intelligence, 2025, 55 (4)
  • [34] Day-Ahead Load Forecasting using Support Vector Regression Machines
    Velasco, Lemuel Clark P.
    Polestico, Daisy Lou L.
    Abella, Dominique Michelle M.
    Alegata, Genesis T.
    Luna, Gabrielle C.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 22 - 27
  • [35] Day-Ahead Electricity Prices Forecasting Using Artificial Neural Networks
    Tang, Qi
    Gu, Danzhen
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL II, PROCEEDINGS, 2009, : 511 - 514
  • [36] Point and interval forecasting of real-time and day-ahead electricity prices by a novel hybrid approach
    Tahmasebifar, Reza
    Sheikh-El-Eslami, Mohammad Kazem
    Kheirollahi, Reza
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2017, 11 (09) : 2173 - 2183
  • [37] Electricity price forecasting on the day-ahead market using machine learning
    Tschora, Leonard
    Pierre, Erwan
    Plantevit, Marc
    Robardet, Celine
    APPLIED ENERGY, 2022, 313
  • [38] The Nonlinear Model by Using Neural Networks for Day-Ahead Price Forecasting
    Mezera, Jan
    Martinek, Zbynek
    Majer, Viktor
    Kralovcova, Veronika
    PROCEEDINGS OF THE 13TH INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRIC POWER ENGINEERING 2012, VOLS 1 AND 2, 2012, : 239 - 242
  • [39] Day-ahead forecasting of regional photovoltaic production using deep learning
    Aillaud, Pierre
    Lequeux, Jeremie
    Mathe, Johan
    Huet, Laurent
    Lallemand, Caroline
    Liandrat, Olivier
    Sebastien, Nicolas
    Kurzrock, Frederik
    Schmutz, Nicolas
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 2688 - 2691
  • [40] Day-Ahead Wind Speed Forecasting Using Relevance Vector Machine
    Sun, Guoqiang
    Chen, Yue
    Wei, Zhinong
    Li, Xiaolu
    Cheung, Kwok W.
    JOURNAL OF APPLIED MATHEMATICS, 2014,