Thermodynamic optimizing of pressure-retarded osmosis power generation systems

被引:55
|
作者
Seppälä, A [1 ]
Lampinen, MJ [1 ]
机构
[1] Helsinki Univ Technol, Dept Energy Engn, Lab Appl Thermodynam, FIN-02015 HUT, Finland
关键词
osmosis; transport equation; power and entropy generation; thermodynamics;
D O I
10.1016/S0376-7388(99)00108-8
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A transport equation for a solution flow increasing due to osmosis inside a hollow cylindrical fibre is derived. The equation can be applied for either direct, pressure-retarded or reverse osmosis, when the membrane is highly selective. This transport equation is used to study theoretically the net power delivered, and the entropy generated by two different concepts of a pressure-retarded osmosis power production system. As a result, the system can be optimized either by maximizing the net power or maximizing the ratio (Psi) between the net power and entropy generation. In both cases the optimal values of the initial hydrostatic pressure difference between the inner and the outer sides of the fibre, the initial velocity of the solution and the fibre length could be specified. However, in some cases these two methods of optimization result in remarkably different optimal values. The resulting net power, when Psi was maximized, was found to drop to less than half the maximum net power. The local entropy generation was found always to result in a minimum value at a certain longitudinal position inside the fibre. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:115 / 138
页数:24
相关论文
共 50 条
  • [31] A tool for assessing the scalability of pressure-retarded osmosis (PRO) membranes
    Manzoor, Husnain
    Selam, Muaz A.
    Rahman, Fahim Bin Abdur
    Adham, Samer
    Castier, Marcelo
    Abdel-Wahab, Ahmed
    RENEWABLE ENERGY, 2020, 149 : 987 - 999
  • [32] THE USE OF PRESSURE-RETARDED OSMOSIS FOR INCREASING THE SOLAR POND EFFICIENCY
    BEMPORAD, GA
    SOLAR ENERGY, 1992, 48 (06) : 375 - 379
  • [33] Semipermeable Membrane Mass Transfer in Pressure-Retarded Osmosis Process
    You, Yonghua
    Huang, Suyi
    Yang, Yi
    Liu, Chao
    Wu, Zhilin
    Yu, Xiangfei
    ADVANCES IN COMPUTER SCIENCE AND ENGINEERING, 2012, 141 : 307 - 315
  • [34] Concentration and Temperature Effects on Water and Salt Permeabilities in Osmosis and Implications in Pressure-Retarded Osmosis
    Sivertsen, Edvard
    Holt, Torleif
    Thelin, Willy R.
    MEMBRANES, 2018, 8 (03)
  • [35] Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System
    Hong, Sung Soo
    Ryoo, Won
    Chun, Myung-Suk
    Chung, Gui Yung
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2014, 52 (01): : 68 - 74
  • [36] Performance analysis of reverse osmosis, membrane distillation, and pressure-retarded osmosis hybrid processes
    Kim, Jihye
    Park, Minkyu
    Shon, Ho Kyong
    Kim, Joon Ha
    DESALINATION, 2016, 380 : 85 - 92
  • [37] Power generation with pressure retarded osmosis: An experimental and theoretical investigation
    Achilli, Andrea
    Cath, Tzahi Y.
    Childress, Amy E.
    JOURNAL OF MEMBRANE SCIENCE, 2009, 343 (1-2) : 42 - 52
  • [38] Recent developments in pressure retarded osmosis for desalination and power generation
    Tawalbeh, Muhammad
    Al-Othman, Amani
    Abdelwahab, Noun
    Alami, Abdul Hai
    Olabi, Abdul Ghani
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 138 (138):
  • [39] Viability of pressure-retarded osmosis for harvesting energy from salinity gradients
    Touati, Khaled
    Rahaman, Md Saifur
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 131 (131):
  • [40] Comparison of several types in Pressure-Retarded Osmosis energy conversion system
    Honda, T.
    Denshi Gijutsu Sogo Kenkyusho Iho/Bulletin of the Electrotechnical Laboratory, 1988, 52 (12): : 1 - 18