Functional A Posteriori Error Estimates for Parabolic Time-Periodic Boundary Value Problems

被引:10
|
作者
Langer, Ulrich [1 ]
Repin, Sergey [2 ,3 ]
Wolfmayr, Monika [4 ]
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] VA Steklov Math Inst, St Petersburg 191023, Russia
[3] Univ Jyvaskyla, SF-40351 Jyvaskyla, Finland
[4] Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Parabolic Time-Periodic Boundary Value Problems; Multiharmonic Finite Element Methods; Functional A Posteriori Error Estimates; PARALLEL METHOD; DISCRETIZATION; SOLVERS;
D O I
10.1515/cmam-2015-0012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with parabolic time-periodic boundary value problems which are of theoretical interest and arise in different practical applications. The multiharmonic finite element method is well adapted to this class of parabolic problems. We study properties of multiharmonic approximations and derive guaranteed and fully computable bounds of approximation errors. For this purpose, we use the functional a posteriori error estimation techniques earlier introduced by S. Repin. Numerical tests confirm the efficiency of the a posteriori error bounds derived.
引用
收藏
页码:353 / 372
页数:20
相关论文
共 50 条
  • [41] A posteriori error estimates for optimal control problems governed by parabolic equations
    Liu, WB
    Yan, NN
    NUMERISCHE MATHEMATIK, 2003, 93 (03) : 497 - 521
  • [42] A posteriori error estimates for mixed finite element approximations of parabolic problems
    Larson, Mats G.
    Malqvist, Axel
    NUMERISCHE MATHEMATIK, 2011, 118 (01) : 33 - 48
  • [43] A POSTERIORI ERROR ESTIMATES OF MIXED METHODS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Chen, Yanping
    Liu, Lingli
    Lu, Zuliang
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (10) : 1135 - 1157
  • [44] A posteriori error estimates for mixed finite element approximations of parabolic problems
    Mats G. Larson
    Axel Målqvist
    Numerische Mathematik, 2011, 118 : 33 - 48
  • [45] ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Tang, Yuelong
    Hua, Yuchun
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2014, 4 (03): : 295 - 306
  • [46] LOCAL A POSTERIORI ERROR ESTIMATES FOR CONVEX BOUNDARY CONTROL PROBLEMS
    Liu, Wenbin
    Yan, Ningning
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1886 - 1908
  • [47] A posteriori error estimates for some model boundary control problems
    Liu, WB
    Yan, NN
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 120 (1-2) : 159 - 173
  • [48] New Interpolation Error Estimates and A Posteriori Error Analysis for Linear Parabolic Interface Problems
    Sen Gupta, Jhuma
    Sinha, Rajen Kumar
    Reddy, G. Murali Mohan
    Jain, Jinank
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (02) : 570 - 598
  • [49] Functional a posteriori error estimates for elliptic problems in exterior domains
    Pauly D.
    Repin S.
    Journal of Mathematical Sciences, 2009, 162 (3) : 393 - 406
  • [50] Posteriori Error Estimates for Mixed Finite Element and Finite Volume Methods for Parabolic Problems Coupled through a Boundary
    Arbogast, T.
    Estep, D.
    Sheehan, B.
    Tavener, S.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 169 - 198