Functional A Posteriori Error Estimates for Parabolic Time-Periodic Boundary Value Problems

被引:10
|
作者
Langer, Ulrich [1 ]
Repin, Sergey [2 ,3 ]
Wolfmayr, Monika [4 ]
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] VA Steklov Math Inst, St Petersburg 191023, Russia
[3] Univ Jyvaskyla, SF-40351 Jyvaskyla, Finland
[4] Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Parabolic Time-Periodic Boundary Value Problems; Multiharmonic Finite Element Methods; Functional A Posteriori Error Estimates; PARALLEL METHOD; DISCRETIZATION; SOLVERS;
D O I
10.1515/cmam-2015-0012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with parabolic time-periodic boundary value problems which are of theoretical interest and arise in different practical applications. The multiharmonic finite element method is well adapted to this class of parabolic problems. We study properties of multiharmonic approximations and derive guaranteed and fully computable bounds of approximation errors. For this purpose, we use the functional a posteriori error estimation techniques earlier introduced by S. Repin. Numerical tests confirm the efficiency of the a posteriori error bounds derived.
引用
收藏
页码:353 / 372
页数:20
相关论文
共 50 条