Random Walk Kernel Applications to Classification using Support Vector Machines

被引:0
|
作者
Gavriilidis, Vasileios [1 ]
Tefas, Anastasios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece
关键词
DIMENSIONALITY REDUCTION; RECOGNITION;
D O I
10.1109/ICPR.2014.668
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel Methods are algorithms that are widely used, mainly because they can implicitly perform a non-linear mapping of the input data to a high dimensional feature space. In this paper, novel Kernel Matrices, that reflect the general structure of data, are proposed for classification. The proposed Matrices exploit properties of the graph theory, which are generated using power iterations of already known Kernel Matrices and three approaches are presented. Experiments on various datasets are conducted and statistical tests are performed, comparing our proposed approach against current Kernel Matrices used on support vector machines. Also, experiments on real datasets for folk dance and activity recognition that highlight the superiority of our proposed method, are provided.
引用
收藏
页码:3898 / 3903
页数:6
相关论文
共 50 条
  • [21] Classification of Torreya Using Support Vector Machines
    Wang, Xiaodong
    Chang, Jianli
    2012 THIRD INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND INFORMATION (TEIN 2012), 2012, : 212 - 216
  • [22] Cloud classification using support vector machines
    Azimi-Sadjadi, MR
    Zekavat, SA
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 669 - 671
  • [23] Gender classification using support vector machines
    Yang, MH
    Moghaddam, B
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2000, : 471 - 474
  • [24] Classification of Performers using Support Vector Machines
    Reljin, Natasa
    Pokrajac, Dragoljub
    NEUREL 2008: NINTH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, PROCEEDINGS, 2008, : 156 - +
  • [25] Pose classification using support vector machines
    Ardizzone, E
    Chella, A
    Pirrone, R
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 317 - 322
  • [26] Scene Classification Using Support Vector Machines
    Mandhala, Venkata Naresh
    Sujatha, V.
    Devi, B. Renuka
    2014 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2014, : 1807 - 1810
  • [27] Texture classification using the support vector machines
    Li, ST
    Kwok, JT
    Zhu, HL
    Wang, YN
    PATTERN RECOGNITION, 2003, 36 (12) : 2883 - 2893
  • [28] Accent classification using support vector machines
    Pedersen, Carol
    Diederich, Joachim
    6TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, PROCEEDINGS, 2007, : 444 - +
  • [29] A DATA-DRIVEN MIXTURE KERNEL FOR COUNT DATA CLASSIFICATION USING SUPPORT VECTOR MACHINES
    Bouguila, Nizar
    2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 26 - 31
  • [30] Combined Features and Kernel Design for Noise Robust Phoneme Classification Using Support Vector Machines
    Yousafzai, Jibran
    Sollich, Peter
    Cvetkovic, Zoran
    Yu, Bin
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2011, 19 (05): : 1396 - 1407