Walking on fractals: diffusion and self-avoiding walks on percolation clusters

被引:22
|
作者
Blavatska, V. [1 ,2 ,3 ]
Janke, W. [1 ,2 ]
机构
[1] Univ Leipzig, Inst Theoret Phys, D-04009 Leipzig, Germany
[2] Univ Leipzig, Ctr Theoret Sci NTZ, D-04009 Leipzig, Germany
[3] Natl Acad Sci Ukraine, Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine
关键词
MONTE-CARLO; CRITICAL EXPONENTS; ANOMALOUS DIFFUSION; CRITICAL-BEHAVIOR; EXACT-ENUMERATION; DILUTED LATTICES; STATISTICS; ALGORITHM; EXTENSION; BACKBONE;
D O I
10.1088/1751-8113/42/1/015001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider random walks (RWs) and self-avoiding walks (SAWs) on disordered lattices directly at the percolation threshold. Applying numerical simulations, we study the scaling behavior of the models on the incipient percolation cluster in space dimensions d = 2, 3, 4. Our analysis yields estimates of universal exponents, governing the scaling laws for configurational properties of RWs and SAWs.
引用
收藏
页数:18
相关论文
共 50 条