Protein Powder Derived Porous Carbon Materials as Supercapacitor Electrodes

被引:7
|
作者
Niu, Ben [1 ]
Yuan, Mengying [1 ]
Jiang, Feng [1 ]
Li, Mei [1 ,2 ,3 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Mat Sci & Engn, Jinan 250353, Shandong, Peoples R China
[2] Shandong Prov Key Lab Proc & Testing Technol Glas, Jinan 250353, Shandong, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Key Lab Amorphous & Polycrystalline Mat, Jinan 250353, Shandong, Peoples R China
来源
关键词
Microporous carbon; Nitrogen doping; Electrochemical performance; Supercapacitors; HIGH-PERFORMANCE SUPERCAPACITOR; ORDERED MESOPOROUS CARBONS; RESIN-BASED CARBON; GRAPHENE-OXIDE; NITROGEN; NANOSPHERES; REDUCTION; PSEUDOCAPACITANCE; NANOSHEETS; COMPOSITE;
D O I
10.20964/2019.04.33
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Protein-based microporous carbon (PMC) with high nitrogen, sulfur content and the specific surface area was obtained from commercial protein powder(PP) by KOH activation. Many interconnected micropores and mesopores were formed in the carbonization process, the specific surface area of the PMC was up to 1117 m(2) g(-1). The nitrogen content is 15.29 at.%, sulfur percent is 0.71 at.% in the as-prepared PMC. Both high specific area and heteroatom content bring the ideal capacitance characteristics when PMC was fabricated as supercapacitor electrodes. The different carbonization temperature and activation ratio of PP to KOH have been discussed to get the best electrochemical performances. The specific capacitance of PMC600-1:2 was up to 336 F g(-1) at a current density of 1 A g(-1), much higher than that of commercial electrodes. The capacitance retention is 173 F g(-)1 at 10 A g(-1), indicating that the PMC owns good rate capability. At the same time, the cycling stability of the sample is 83 % after 10000 cycles at 10 A g(-1). Furthermore, an as-fabricated PMC-based symmetric supercapacitor device shows a high energy density of 27 W h kg(-1) at a power density of 900 W kg(-1).
引用
收藏
页码:3253 / 3264
页数:12
相关论文
共 50 条
  • [31] Construction of fungus waste-derived porous carbon as electrode materials for electrochemical supercapacitor
    Xiangping Li
    Zhenping Su
    Peng Liang
    Jianguang Zhang
    Biomass Conversion and Biorefinery, 2023, 13 : 6237 - 6248
  • [32] Sodium lignosulfonate-derived hierarchical porous carbon electrode materials for supercapacitor applications
    Sun, Rui
    Chen, Ya
    Gao, Xuan
    Xie, Guiming
    Yang, Rui
    Yang, Chunliang
    Shi, Yongyong
    Yi, Yun
    JOURNAL OF ENERGY STORAGE, 2024, 91
  • [33] Hierarchical porous carbon derived from acai seed biowaste for supercapacitor electrode materials
    de Souza, Luiz K. C.
    Martins, Joao Carlos
    Oliveira, Diogo Padilha
    Ferreira, Carlos Sergio
    Goncalves, Alexandre A. S.
    Araujo, Rayanne O.
    da Silva Chaar, Jamal
    Costa, Maria J. F.
    Sampaio, David V.
    Passos, Raimundo R.
    Pocrifka, Leandro A.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (15) : 12148 - 12157
  • [34] Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption
    Xiao, Pei-Wen
    Meng, Qinghai
    Zhao, Li
    Li, Jing-Jing
    Wei, Zhixiang
    Han, Bao-Hang
    MATERIALS & DESIGN, 2017, 129 : 164 - 172
  • [35] Construction of fungus waste-derived porous carbon as electrode materials for electrochemical supercapacitor
    Li, Xiangping
    Su, Zhenping
    Liang, Peng
    Zhang, Jianguang
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (07) : 6237 - 6248
  • [36] Biomass-derived porous carbons as supercapacitor electrodes - A review
    Shaker, Majid
    Ghazvini, Ali Asghar Sadeghi
    Cao, Weiqi
    Riahifar, Reza
    Ge, Qi
    NEW CARBON MATERIALS, 2021, 36 (03) : 546 - 568
  • [37] Effect of carbon powder thermal activation on characteristics of supercapacitor electrodes
    Kavaliauskas, Zydrunas
    Marcinauskas, Liutauras
    Aikas, Mindaugas
    Valincius, Vitas
    Milieska, Mindaugas
    Baltusnikas, Arunas
    JOURNAL OF ELECTROSTATICS, 2017, 90 : 61 - 66
  • [38] Rice Husk Derived Micro-Mesoporous Carbon Materials as Active Components of Supercapacitor Electrodes
    Lebedeva M.V.
    Yeletsky P.M.
    Ayupov A.B.
    Kuznetsov A.N.
    Gribov E.N.
    Parmon V.N.
    Catalysis in Industry, 2018, 10 (02) : 173 - 180
  • [39] A one-stone-two-birds strategy to lignin-derived porous carbon for supercapacitor electrodes
    Li, Xinru
    Wang, Bo
    Lu, Feifan
    Xu, Jingyu
    Cai, Weijie
    Tan, Fengzhi
    DIAMOND AND RELATED MATERIALS, 2024, 142
  • [40] The Formation of Nanocomposites Carbon Nanotubes/Porous Silicon for Supercapacitor Electrodes
    Bolotov, V. V.
    Nesov, S. N.
    Ponomareva, I., V
    Knyazev, E., V
    Ivlev, K. E.
    Stenkin, Yu A.
    Roslikov, V. E.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY, 2020, 2310