Sub-50-nm physical gate length CMOS technology and beyond using steep halo

被引:27
|
作者
Wakabayashi, H [1 ]
Ueki, M
Narihiro, M
Fukai, T
Ikezawa, N
Matsuda, T
Yoshida, K
Takeuchi, K
Ochiai, Y
Mogami, T
Kunio, T
机构
[1] NEC Corp Ltd, Silicon Syst Res Labs, Kanagawa 2291198, Japan
[2] NEC Corp Ltd, ULSI Device Dev Div, Kanagawa 2291198, Japan
关键词
CMOS; halo; reverse-order source/drain formation; source/drain extensions; spike annealing; sub-50-nm;
D O I
10.1109/16.974754
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
ddSub-50-nm CMOS devices are investigated using steep halo and shallow source/drain extensions. By using a highramp-rate spike annealing (HRR-SA) process and high-dose halo, 45-nm CMOS devices are fabricated with drive currents of 650 and 300 muA/mum for an off current of less than 10 nA/mum at 1.2 V with T. (inv)(ox) = 2.5 nm. For an off current less than 300 nA/mum, 33-nm pMOSFETs have a high drive current of 400 muA/mum. Short-channel effect and reverse short-channel effect are suppressed simultaneously by using the HRR-SA process to activate a source/drain extension (SDE) after forming a deep source/drain (S/D). This process sequence is defined as a reverse-order S/D (R-S/D) formation. By using this formation, 24-nm nMOSFETs are achieved with a high drive current of 800 muA/mum for an off current of less than 300 nA/mum at 1.2 V. This high drive current might be a result of a steep halo structure reducing the spreading resistance of source/drain extensions.
引用
收藏
页码:89 / 95
页数:7
相关论文
共 50 条
  • [41] A 50 to 70 GHz Power Amplifier Using 90 nm CMOS Technology
    Kuo, Jing-Lin
    Tsai, Zlio-Min
    Lin, Kun-You
    Wang, Huei
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2009, 19 (01) : 45 - 47
  • [42] Fabrication technology and device performance of sub-50-nm-gate InP-based HEMTs
    Endoh, A
    Yamashita, Y
    Shinohara, K
    Higashiwaki, M
    Hikosaka, K
    Mimura, T
    Hiyamizu, S
    Matsui, T
    2001 INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS, CONFERENCE PROCEEDINGS, 2001, : 448 - 451
  • [43] Using phase shifting to extend 248nm litho beyond the 50nm gate process
    Fang, CY
    Hung, KC
    Huang, ZX
    Hsu, SH
    Huang, J
    SOLID STATE TECHNOLOGY, 2002, 45 (11) : 39 - +
  • [44] Rapid thermal processing of high dielectric constant gate dielectrics for sub 70 nm silicon CMOS technology
    Fakhruddin, M
    Singh, R
    Poole, KF
    Kar, S
    10TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED THERMAL PROCESSING OF SEMICONDUCTORS - RTP 2002, 2002, : 89 - 91
  • [45] Formation of S/D-extension using boron gas cluster ion beam doping for sub-50-nm PMOSFET
    Yamashita, T
    Hayashi, T
    Nishida, Y
    Kawasaki, Y
    Kuroi, T
    Oda, H
    Eimori, T
    Ohji, Y
    FIFTH INTERNATIONAL WORKSHOP ON JUNCTION TECHNOLOGY, 2005, : 35 - 36
  • [46] Ultra-thin gate oxide lifetime projection and degradation mechanism beyond 90 nm CMOS technology
    Lin, Cheng-Li
    Kao, Tom
    Chen, Ju-Ping
    Yang, Jeff Y. C.
    Su, K. C.
    2006 IEEE INTERNATIONAL INTEGRATED RELIABILITY WORKSHOP, FINAL REPORT, 2006, : 186 - +
  • [47] Recoiled-oxygen-free processing for 1.5 nm SiON gate-dielectric in sub-100-nm CMOS technology
    Togo, M
    Kimura, S
    Mogami, T
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (07) : 1165 - 1171
  • [48] Design consideration of bulk FinFETs devices with n+/p+/n+ gate and p+/n+ gate for sub-50-nm DRAM cell transistors
    Park, Ki-Heung
    Kim, Young Min
    Choi, Byung-Kil
    Han, Kyoung-Rok
    Lee, Jong-Ho
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (04) : 427 - 433
  • [49] Design of 50 MHz PLL using indigenous SCL 180 nm CMOS Technology
    Shekhar, Chandra
    Qureshi, S.
    2021 IEEE INTERNATIONAL SYMPOSIUM ON SMART ELECTRONIC SYSTEMS (ISES 2021), 2021, : 12 - 17
  • [50] Sub-50nm gate patterning using line-trimming with 248 or 193nm litho
    Pollentier, Ivan
    Jaenen, Patrick
    Baerts, Christina
    Ronse, Kurt
    Microlithography World, 2002, 11 (02):