Sub-50-nm physical gate length CMOS technology and beyond using steep halo

被引:27
|
作者
Wakabayashi, H [1 ]
Ueki, M
Narihiro, M
Fukai, T
Ikezawa, N
Matsuda, T
Yoshida, K
Takeuchi, K
Ochiai, Y
Mogami, T
Kunio, T
机构
[1] NEC Corp Ltd, Silicon Syst Res Labs, Kanagawa 2291198, Japan
[2] NEC Corp Ltd, ULSI Device Dev Div, Kanagawa 2291198, Japan
关键词
CMOS; halo; reverse-order source/drain formation; source/drain extensions; spike annealing; sub-50-nm;
D O I
10.1109/16.974754
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
ddSub-50-nm CMOS devices are investigated using steep halo and shallow source/drain extensions. By using a highramp-rate spike annealing (HRR-SA) process and high-dose halo, 45-nm CMOS devices are fabricated with drive currents of 650 and 300 muA/mum for an off current of less than 10 nA/mum at 1.2 V with T. (inv)(ox) = 2.5 nm. For an off current less than 300 nA/mum, 33-nm pMOSFETs have a high drive current of 400 muA/mum. Short-channel effect and reverse short-channel effect are suppressed simultaneously by using the HRR-SA process to activate a source/drain extension (SDE) after forming a deep source/drain (S/D). This process sequence is defined as a reverse-order S/D (R-S/D) formation. By using this formation, 24-nm nMOSFETs are achieved with a high drive current of 800 muA/mum for an off current of less than 300 nA/mum at 1.2 V. This high drive current might be a result of a steep halo structure reducing the spreading resistance of source/drain extensions.
引用
收藏
页码:89 / 95
页数:7
相关论文
共 50 条
  • [1] 45-nm gate length CMOS technology and beyond using steep halo
    Wakabayashi, H
    Ueki, M
    Narihiro, M
    Fukai, T
    Ikezawa, N
    Matsuda, T
    Yoshida, K
    Takeuchi, K
    Ochiai, Y
    Mogami, T
    Kunio, T
    INTERNATIONAL ELECTRON DEVICES MEETING 2000, TECHNICAL DIGEST, 2000, : 49 - 52
  • [2] Fluorine-assisted super-halo for sub-50-nm transistors
    Liu, KP
    Wu, J
    Chen, JH
    Jain, A
    IEEE ELECTRON DEVICE LETTERS, 2003, 24 (03) : 180 - 182
  • [3] Electron Transport Behavior on Gate Length Scaling in Sub-50-nm GaAs Metal Semiconductor Field Effect Transistors
    Han, Jaeheon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 58 (05) : 1343 - 1346
  • [4] Gate workfunction engineering in bulk FinFETs for sub-50-nm DRAM cell transistors
    Park, Ki-Heung
    Lee, Jong-Ho
    IEEE ELECTRON DEVICE LETTERS, 2007, 28 (02) : 148 - 150
  • [5] Velocity Overshoot and Its Degradation in Sub-50-nm Gate-length GaAs/AlGaAs High-electron-mobility Transistors
    Han, Jaeheon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 55 (01) : 38 - 41
  • [6] FABRICATION OF SUB-50-NM GATE LENGTH N-METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS AND THEIR ELECTRICAL CHARACTERISTICS
    ONO, M
    SAITO, M
    YOSHITOMI, T
    FIEGNA, C
    OHGURO, T
    MOMOSE, HS
    IWAI, H
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (04): : 1740 - 1743
  • [7] Sub-50-nm measurements using a 193 nm angle-resolved scatterfield microscope
    Quintanilha, R.
    Sohn, Y. J.
    Barnes, B. M.
    Silver, R.
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXIV, 2010, 7638
  • [8] A novel high-performance and robust sense amplifier using independent gate control in sub-50-nm double-gate MOSFET
    Mukhopadhyay, S
    Mahmoodi, H
    Roy, K
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2006, 14 (02) : 183 - 192
  • [9] DC and AC characteristics of sub-50-nm MOSFETs with source/drain-to-gate nonoverlapped structure
    Lee, H
    Lee, J
    Shin, H
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (04) : 219 - 225
  • [10] A 70 nm gate length CMOS technology with 1.0 V operation
    Ono, A
    Fukasaku, K
    Matsuda, T
    Fukai, T
    Ikezawa, N
    Imai, K
    Horiuchi, T
    2000 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2000, : 14 - 15