A Hidden Markov Filtering Approach to Multiple Change-point Models

被引:0
|
作者
Lai, Tze Leung [1 ]
Xing, Haipeng [2 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe a hidden Markov modeling approach to multiple change-points that has attractive computational and statistical properties. This approach yields explicit recursive filters and smoothers for estimating the piecewise constant parameters. Applications to array-CGH data analysis in genetic studies of cancer and to on-line detection, estimation and adaptive control of stochastic systems whose parameters may undergo occasional changes are given to illustrate the versatility of the proposed methodology.
引用
收藏
页码:1914 / 1919
页数:6
相关论文
共 50 条
  • [31] Exploring the latent segmentation space for the assessment of multiple change-point models
    Yann Guédon
    Computational Statistics, 2013, 28 : 2641 - 2678
  • [32] Change-point estimation in ARCH models
    Kokoszka, P
    Leipus, R
    BERNOULLI, 2000, 6 (03) : 513 - 539
  • [33] Change-point models in industrial applications
    Yashchin, Emmanuel
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (07): : 3997 - 4006
  • [34] Sparse change-point VAR models
    Dufays, Arnaud
    Li, Zhuo
    Rombouts, Jeroen V. K.
    Song, Yong
    JOURNAL OF APPLIED ECONOMETRICS, 2021, 36 (06) : 703 - 727
  • [35] Nonparametric multiple change-point estimators
    Lee, CB
    STATISTICS & PROBABILITY LETTERS, 1996, 27 (04) : 295 - 304
  • [36] Change-point detection for piecewise deterministic Markov processes
    Cleynen, Alice
    de Saporta, Benoite
    AUTOMATICA, 2018, 97 : 234 - 247
  • [37] Multiple change-point detection of multivariate mean vectors with the Bayesian approach
    Cheon, Sooyoung
    Kim, Jaehee
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 406 - 415
  • [38] Segmentation and Estimation for SNP Microarrays: A Bayesian Multiple Change-Point Approach
    Tai, Yu Chuan
    Kvale, Mark N.
    Witte, John S.
    BIOMETRICS, 2010, 66 (03) : 675 - 683
  • [39] Software reliability prediction and management: A multiple change-point model approach
    Ke, Syuan-Zao
    Huang, Chin-Yu
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2020, 36 (05) : 1678 - 1707
  • [40] Change detection of Hidden Markov Models
    Gerencsér, L
    Molnár-Sáska, G
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 1754 - 1758