A Hidden Markov Filtering Approach to Multiple Change-point Models

被引:0
|
作者
Lai, Tze Leung [1 ]
Xing, Haipeng [2 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe a hidden Markov modeling approach to multiple change-points that has attractive computational and statistical properties. This approach yields explicit recursive filters and smoothers for estimating the piecewise constant parameters. Applications to array-CGH data analysis in genetic studies of cancer and to on-line detection, estimation and adaptive control of stochastic systems whose parameters may undergo occasional changes are given to illustrate the versatility of the proposed methodology.
引用
收藏
页码:1914 / 1919
页数:6
相关论文
共 50 条
  • [1] Dirichlet Process Hidden Markov Multiple Change-point Model
    Ko, Stanley I. M.
    Chong, Terence T. L.
    Ghosh, Pulak
    BAYESIAN ANALYSIS, 2015, 10 (02): : 275 - 296
  • [2] Statistical inference for multiple change-point models
    Wang, Wu
    He, Xuming
    Zhu, Zhongyi
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (04) : 1149 - 1170
  • [3] Estimation and comparison of multiple change-point models
    Chib, S
    JOURNAL OF ECONOMETRICS, 1998, 86 (02) : 221 - 241
  • [4] Segmentation uncertainty in multiple change-point models
    Guedon, Yann
    STATISTICS AND COMPUTING, 2015, 25 (02) : 303 - 320
  • [5] Segmentation uncertainty in multiple change-point models
    Yann Guédon
    Statistics and Computing, 2015, 25 : 303 - 320
  • [6] PRIOR ELICITATION IN MULTIPLE CHANGE-POINT MODELS
    Koop, Gary
    Potter, Simon M.
    INTERNATIONAL ECONOMIC REVIEW, 2009, 50 (03) : 751 - 772
  • [7] Multiple change-point models for time series
    MacNeill, I. B.
    Jandhyala, V. K.
    Kaul, A.
    Fotopoulos, S. B.
    ENVIRONMETRICS, 2020, 31 (01)
  • [8] Fitting multiple change-point models to data
    Hawkins, DM
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 37 (03) : 323 - 341
  • [9] Quasi-hidden Markov model and its applications in change-point problems
    Wu, Zhengxiao
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (12) : 2273 - 2290
  • [10] Filtering on hidden Markov models
    Kim, NS
    Kim, DK
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (09) : 253 - 255