Exploring information theory for vision-based volumetric mapping

被引:0
|
作者
Rocha, R [1 ]
Dias, J [1 ]
Carvalho, A [1 ]
机构
[1] Univ Coimbra, Fac Sci & Technol, Inst Syst & Robot, P-3030290 Coimbra, Portugal
关键词
3-D volumetric mapping; entropy; probabilistic maps; mapping and exploration; stereo-vision sensors;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents an innovative probabilistic approach for building volumetric maps of unknown environments with autonomous mobile robots, which is based on information theory. Each mobile robot uses an entropy gradient-based exploration strategy, with the aim of maximizing information gain when building and improving a 3-D map upon measurements yielded by an on-board stereo-vision sensor. The proposed framework was validated through experiments with a real mobile robot equipped with stereo-vision, in order to be further used on cooperative volumetric mapping with teams of mobile robots.
引用
收藏
页码:2409 / 2414
页数:6
相关论文
共 50 条
  • [41] Vision-based Leader-Follower Formations with Limited Information
    Min, Hyeun Jeong
    Drenner, Andrew
    Papanikolopoulos, Nikolaos
    ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 526 - 531
  • [42] A Lightweight Vision-Based Measurement for Hand Gesture Information Acquisition
    Wang, Shichao
    Guo, Chenxia
    Yang, Ruifeng
    Zhang, Qianchuang
    Ren, Haoyu
    IEEE SENSORS JOURNAL, 2023, 23 (05) : 4964 - 4973
  • [43] Vision-based Acoustic Information Retrieval for Interactive Sound Rendering
    Colombo, Mattia
    2021 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY ADJUNCT PROCEEDINGS (ISMAR-ADJUNCT 2021), 2021, : 487 - 490
  • [44] Sensor and information fusion for improved vision-based vehicle guidance
    Murphy, RR
    IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1998, 13 (06): : 49 - 56
  • [45] INFORMATION-DRIVEN AUTONOMOUS EXPLORATION FOR A VISION-BASED MAV
    Palazzolo, Emanuele
    Stachniss, Cyrill
    INTERNATIONAL CONFERENCE ON UNMANNED AERIAL VEHICLES IN GEOMATICS (VOLUME IV-2/W3), 2017, 4-2 (W3): : 59 - 66
  • [46] Sensor and information fusion for improved vision-based vehicle guidance
    Murphy, Robin R.
    IEEE Intelligent Systems and Their Applications, 13 (06): : 49 - 56
  • [47] Exploring Vision-Based Techniques for Outdoor Positioning Systems: A Feasibility Study
    Song, Meina
    Ou, Zhonghong
    Castellanos, Eduardo
    Ylipiha, Tuomas
    Kamarainen, Teemu
    Siekkinen, Matti
    Yla-Jaaski, Antti
    Hui, Pan
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2017, 16 (12) : 3361 - 3375
  • [48] EVALUATION OF VISION-BASED LOCALIZATION AND MAPPING TECHNIQUES IN A SUBSEA METROLOGY SCENARIO
    Menna, F.
    Torresani, A.
    Nocerino, E.
    Nawaf, M. M.
    Seinturier, J.
    Remondino, F.
    Drap, P.
    Chemisky, B.
    UNDERWATER 3D RECORDING AND MODELLING: A TOOL FOR MODERN APPLICATIONS AND CH RECORDING, 2019, 42-2 (W10): : 127 - 134
  • [49] Robust Vision-Based Autonomous Navigation, Mapping and Landing for MAVs at Night
    Daftry, Shreyansh
    Das, Manash
    Delaune, Jeff
    Sorice, Cristina
    Hewitt, Robert
    Reddy, Shreetej
    Lytle, Daniel
    Gu, Elvin
    Matthies, Larry
    PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2020, 11 : 232 - 242
  • [50] Extended Kalman Filter for Stereo Vision-Based Localization and Mapping Applications
    Wong, Xue Iuan
    Majji, Manoranjan
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2018, 140 (03):