Discriminative Layer Pruning for Convolutional Neural Networks

被引:28
|
作者
Jordao, Artur [1 ]
Lie, Maiko [1 ]
Schwartz, William Robson [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Comp Sci, Smart Sense Lab, BR-31270901 Belo Horizonte, MG, Brazil
关键词
Computer architecture; Estimation; Convolutional neural networks; Computational efficiency; Internet of Things; Visualization; Network compression; network pruning; convolutional neural networks;
D O I
10.1109/JSTSP.2020.2975987
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The predictive ability of convolutional neural networks (CNNs) can be improved by increasing their depth. However, increasing depth also increases computational cost significantly, in terms of both floating point operations and memory consumption, hindering applicability on resource-constrained systems such as mobile and internet of things (IoT) devices. Fortunately, most networks have spare capacity, that is, they require fewer parameters than they actually have to perform accurately. This motivates network compression methods, which remove or quantize parameters to improve resource-efficiency. In this work, we consider a straightforward strategy for removing entire convolutional layers to reduce network depth. Since it focuses on depth, this approach not only reduces memory usage, but also reduces prediction time significantly by mitigating the serialization overhead incurred by forwarding through consecutive layers. We show that a simple subspace projection approach can be employed to estimate the importance of network layers, enabling the pruning of CNNs to a resource-efficient depth within a given network size constraint. We estimate importance on a subspace computed using Partial Least Squares, a feature projection approach that preserves discriminative information. Consequently, this importance estimation is correlated to the contribution of the layer to the classification ability of the model. We show that cascading discriminative layer pruning with filter-oriented pruning improves the resource-efficiency of the resulting network compared to using any of them alone, and that it outperforms state-of-the-art methods. Moreover, we show that discriminative layer pruning alone, without cascading, achieves competitive resource-efficiency compared to methods that prune filters from all layers.
引用
收藏
页码:828 / 837
页数:10
相关论文
共 50 条
  • [31] Global balanced iterative pruning for efficient convolutional neural networks
    Chang, Jingfei
    Lu, Yang
    Xue, Ping
    Xu, Yiqun
    Wei, Zhen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (23): : 21119 - 21138
  • [32] Pruning convolutional neural networks via filter similarity analysis
    Lili Geng
    Baoning Niu
    Machine Learning, 2022, 111 : 3161 - 3180
  • [33] Entropy-based pruning method for convolutional neural networks
    Cheonghwan Hur
    Sanggil Kang
    The Journal of Supercomputing, 2019, 75 : 2950 - 2963
  • [34] Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks
    He, Yang
    Dong, Xuanyi
    Kang, Guoliang
    Fu, Yanwei
    Yan, Chenggang
    Yang, Yi
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) : 3594 - 3604
  • [35] Global balanced iterative pruning for efficient convolutional neural networks
    Jingfei Chang
    Yang Lu
    Ping Xue
    Yiqun Xu
    Zhen Wei
    Neural Computing and Applications, 2022, 34 : 21119 - 21138
  • [36] Pruning convolutional neural networks via filter similarity analysis
    Geng, Lili
    Niu, Baoning
    MACHINE LEARNING, 2022, 111 (09) : 3161 - 3180
  • [37] Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks
    He, Yang
    Kang, Guoliang
    Dong, Xuanyi
    Fu, Yanwei
    Yang, Yi
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2234 - 2240
  • [38] PRUNING OF CONVOLUTIONAL NEURAL NETWORKS USING ISING ENERGY MODEL
    Salehinejad, Hojjat
    Valaee, Shahrokh
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3935 - 3939
  • [39] Automatic Compression Ratio Allocation for Pruning Convolutional Neural Networks
    Liu, Yunfeng
    Kong, Huihui
    Yu, Peihua
    ICVISP 2019: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING, 2019,
  • [40] A Filter Rank Based Pruning Method for Convolutional Neural Networks
    Liu, Hao
    Guan, Zhenyu
    Lei, Peng
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1318 - 1322