A Simpler Lambda Calculus

被引:2
|
作者
Jay, Barry [1 ]
机构
[1] Univ Technol Sydney, Ctr Artificial Intelligence, Sydney, NSW, Australia
关键词
lambda calculus; closures; closure calculus; EXPLICIT SUBSTITUTIONS;
D O I
10.1145/3294032.3294085
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Closure calculus is simpler than pure lambda-calculus as it does not mention free variables or index manipulation, variable renaming, implicit substitution, or any other meta-theory. Further, all programs, even recursive ones, can be expressed as normal forms. Third, there are reduction-preserving translations to calculi built from combinations of operators, in the style of combinatory logic. These improvements are achieved without sacrificing three fundamental properties of lambda-calculus, being a confluent rewriting system, supporting the Turing computable numerical functions, and supporting simple typing.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Lambda Calculus with Regular Types
    Dundua, Besik
    Florido, Mario
    Kutsia, Temur
    2015 17TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 129 - 136
  • [32] Algorithms, The lambda Calculus and Programming
    Vichare, Abhijat
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2013, 18 (04): : 345 - 367
  • [33] Term Rewriting and Lambda Calculus
    Klop, Jan Willem
    2012 27TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2012, : 12 - 12
  • [34] On the algebraic models of lambda calculus
    Salibra, A
    THEORETICAL COMPUTER SCIENCE, 2000, 249 (01) : 197 - 240
  • [35] Lambda calculus with explicit recursion
    Ariola, ZM
    Klop, JW
    INFORMATION AND COMPUTATION, 1997, 139 (02) : 154 - 233
  • [36] Continuity and discontinuity in lambda calculus
    Severi, P
    de Vries, FJ
    TYPED LAMBDA CALCULI AND APPLICATIONS, PROCEEDINGS, 2005, 3461 : 369 - 385
  • [37] Topology in lambda calculus (I)
    Ying, MS
    NEW TECHNOLOGIES ON COMPUTER SOFTWARE, 1997, : 1 - 5
  • [38] Weak linearization of the lambda calculus
    Alves, S
    Florido, M
    THEORETICAL COMPUTER SCIENCE, 2005, 342 (01) : 79 - 103
  • [39] Nonmodularity results for lambda calculus
    Salibra, A
    FUNDAMENTA INFORMATICAE, 2001, 45 (04) : 379 - 392
  • [40] Boolean algebras for lambda calculus
    Manzonettoto, G.
    Salibra, A.
    21ST ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2006, : 317 - +