A Simpler Lambda Calculus

被引:2
|
作者
Jay, Barry [1 ]
机构
[1] Univ Technol Sydney, Ctr Artificial Intelligence, Sydney, NSW, Australia
关键词
lambda calculus; closures; closure calculus; EXPLICIT SUBSTITUTIONS;
D O I
10.1145/3294032.3294085
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Closure calculus is simpler than pure lambda-calculus as it does not mention free variables or index manipulation, variable renaming, implicit substitution, or any other meta-theory. Further, all programs, even recursive ones, can be expressed as normal forms. Third, there are reduction-preserving translations to calculi built from combinations of operators, in the style of combinatory logic. These improvements are achieved without sacrificing three fundamental properties of lambda-calculus, being a confluent rewriting system, supporting the Turing computable numerical functions, and supporting simple typing.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] A Calculus of Lambda Calculus Contexts
    Mirna Bognar
    Roel de Vrijer
    Journal of Automated Reasoning, 2001, 27 : 29 - 59
  • [2] A calculus of lambda calculus contexts
    Bognar, M
    De Vrijer, R
    JOURNAL OF AUTOMATED REASONING, 2001, 27 (01) : 29 - 59
  • [3] Lambda calculus with patterns
    Klop, Jan Willem
    van Oostrom, Vincent
    de Vrijer, Roel
    THEORETICAL COMPUTER SCIENCE, 2008, 398 (1-3) : 16 - 31
  • [4] The dagger lambda calculus
    Atzemoglou, Philip
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2014, (172): : 217 - 235
  • [5] A Braided Lambda Calculus
    Hasegawa, Masahito
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (353): : 94 - 108
  • [6] Lambda Calculus With Types
    Rezus, Adrian
    STUDIA LOGICA, 2015, 103 (06) : 1319 - 1326
  • [7] Clocked lambda calculus
    Endrullis, Jorg
    Hendriks, Dimitri
    Klop, Jan Willem
    Polonsky, Andrew
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2017, 27 (05) : 782 - 806
  • [8] The algebraic lambda calculus
    Vaux, Lionel
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2009, 19 (05) : 1029 - 1059
  • [9] Objects and their lambda calculus
    Tzouvaras, A
    THEORETICAL COMPUTER SCIENCE, 2001, 258 (1-2) : 209 - 232
  • [10] The lambda calculus is algebraic
    Selinger, P
    JOURNAL OF FUNCTIONAL PROGRAMMING, 2002, 12 : 549 - 566