ADR-Net: Context extraction network based on M-Net for medical image segmentation

被引:9
|
作者
Ji, Lingyu [1 ]
Jiang, Xiaoyan [1 ]
Gao, Yongbin [1 ]
Fang, Zhijun [1 ]
Cai, Qingping [2 ]
Wei, Ziran [2 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai 201620, Peoples R China
[2] Changzheng Hosp, Shanghai 200003, Peoples R China
关键词
attention gate mechanism; deep Learning; dilation convolution; medical image segmentation; residual; spatial pyramid pooling;
D O I
10.1002/mp.14364
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Medical image segmentation is an essential component of medical image analysis. Accurate segmentation can assist doctors in diagnosis and relieve their fatigue. Although several image segmentation methods based on U-Net have been proposed, their performances have been observed to be suboptimal in the case of small-sized objects. To address this shortcoming, a novel network architecture is proposed in this study to enhance segmentation performance on small medical targets. Methods In this paper, we propose a joint multi-scale context attention network architecture to simultaneously capture higher level semantic information and spatial information. In order to obtain a greater number of feature maps during decoding, the network concatenates the images of side inputs by down-sampling during the encoding phase. In the bottleneck layer of the network, dense atrous convolution (DAC) and multi-scale residual pyramid pooling (RMP) modules are exploited to better capture high-level semantic information and spatial information. To improve the segmentation performance on small targets, the attention gate (AG) block is used to effectively suppress feature activation in uncorrelated regions and highlight the target area. Results The proposed model is first evaluated on the public dataset DRIVE, on which it performs significantly better than the basic framework in terms of sensitivity (SE), intersection-over-union (IOU), and area under the receiver operating characteristic curve (AUC). In particular, the SE and IOU are observed to increase by 7.46% and 5.97%, respectively. Further, the evaluation indices exhibit improvements compared to those of state-of-the-art methods as well, with SE and IOU increasing by 3.58% and 3.26%, respectively. Additionally, in order to demonstrate the generalizability of the proposed architecture, we evaluate our model on three other challenging datasets. The respective performances are observed to be better than those of state-of-the-art network architectures on the same datasets. Moreover, we use lung segmentation as a comparative experiment to demonstrate the transferability of the advantageous properties of the proposed approach in the context of small target segmentation to the segmentation of large targets. Finally, an ablation study is conducted to investigate the individual contributions of the AG block, the DAC block, and the RMP block to the performance of the network. Conclusions The proposed method is evaluated on various datasets. Experimental results demonstrate that the proposed model performs better than state-of-the-art methods in medical image segmentation of small targets.
引用
收藏
页码:4254 / 4264
页数:11
相关论文
共 50 条
  • [21] HT-Net: hierarchical context-attention transformer network for medical ct image segmentation
    Mingjun Ma
    Haiying Xia
    Yumei Tan
    Haisheng Li
    Shuxiang Song
    Applied Intelligence, 2022, 52 : 10692 - 10705
  • [22] HT-Net: hierarchical context-attention transformer network for medical ct image segmentation
    Ma, Mingjun
    Xia, Haiying
    Tan, Yumei
    Li, Haisheng
    Song, Shuxiang
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10692 - 10705
  • [23] LCP-Net: A local context-perception deep neural network for medical image segmentation
    Peng, Dunlu
    Xiong, Shiyong
    Peng, Wenjia
    Lu, Jianping
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168
  • [24] 3D M-Net: Object-Specific 3D Segmentation Network Based on a Single Projection
    Li, Xuan
    Wang, Sukai
    Niu, Xiaodong
    Wang, Liming
    Chen, Ping
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [25] TA-Net: Triple attention network for medical image segmentation
    Li, Yang
    Yang, Jun
    Ni, Jiajia
    Elazab, Ahmed
    Wu, Jianhuang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [26] Design of Superpiexl U-Net Network for Medical Image Segmentation
    Wang H.
    Liu H.
    Guo Q.
    Deng K.
    Zhang C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (06): : 1007 - 1017
  • [27] AL-Net: Asymmetric Lightweight Network for Medical Image Segmentation
    Du, Xiaogang
    Nie, Yinyin
    Wang, Fuhai
    Lei, Tao
    Wang, Song
    Zhang, Xuejun
    FRONTIERS IN SIGNAL PROCESSING, 2022, 2
  • [28] PL-Net: progressive learning network for medical image segmentation
    Mao, Kunpeng
    Li, Ruoyu
    Cheng, Junlong
    Huang, Danmei
    Song, Zhiping
    Liu, Zekui
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [29] MEDICAL IMAGE DISTRIBUTION, STORAGE, AND RETRIEVAL NETWORK - THE M/NET
    CYWINSKI, JK
    CYWINSKI, LM
    LEE, L
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 418 : 74 - 79
  • [30] Medical Image Segmentation based on U-Net: A Review
    Du, Getao
    Cao, Xu
    Liang, Jimin
    Chen, Xueli
    Zhan, Yonghua
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2020, 64 (02)