Distributionally Robust Portfolio Optimization

被引:0
|
作者
Bardakci, I. E. [1 ]
Lagoa, C. M. [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
VALUE-AT-RISK; MANAGEMENT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the problem of portfolio optimization involving uncertainty in the probability distribution of the assets returns. Starting with an estimate of the mean and covariance matrix of the returns of the assets, we define a class of admissible distributions for the returns and show that optimizing the worst-case risk of loss can be done in a numerically efficient way. More precisely, we show that determining the asset allocation that minimizes the distributionally robust risk can be done using quadratic programming and a one line search. Effectiveness of the proposed approach is shown using academic examples.
引用
收藏
页码:1526 / 1531
页数:6
相关论文
共 50 条
  • [21] Adaptive Distributionally Robust Optimization
    Bertsimas, Dimitris
    Sim, Melvyn
    Zhang, Meilin
    MANAGEMENT SCIENCE, 2019, 65 (02) : 604 - 618
  • [22] BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION
    Shapiro, Alexander
    Zhou, Enlu
    Lin, Yifan
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (02) : 1279 - 1304
  • [23] Distributionally Robust Bayesian Optimization
    Kirschner, Johannes
    Bogunovic, Ilija
    Jegelka, Stefanie
    Krause, Andreas
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1921 - 1930
  • [24] Distributionally Robust Convex Optimization
    Wiesemann, Wolfram
    Kuhn, Daniel
    Sim, Melvyn
    OPERATIONS RESEARCH, 2014, 62 (06) : 1358 - 1376
  • [25] Distributionally robust end-to-end portfolio construction
    Costa, Giorgio
    Iyengar, Garud N.
    QUANTITATIVE FINANCE, 2023, 23 (10) : 1465 - 1482
  • [26] Distributionally robust end-to-end portfolio construction
    Costa, Giorgio
    Iyengar, Garud N.
    QUANTITATIVE FINANCE, 2021,
  • [27] Distributionally robust portfolio optimization with second- order stochastic dominance based on wasserstein metric
    Hosseini-Nodeh, Zohreh
    Khanjani-Shiraz, Rashed
    Pardalos, Panos M.
    INFORMATION SCIENCES, 2022, 613 : 828 - 852
  • [28] Distributionally robust optimization with Wasserstein metric for multi-period portfolio selection under uncertainty
    Wu, Zhongming
    Sun, Kexin
    APPLIED MATHEMATICAL MODELLING, 2023, 117 : 513 - 528
  • [29] Splitting Algorithms for Distributionally Robust Optimization
    Briceno-Arias, Luis
    Lopez-Rivera, Sergio
    Vilches, Emilio
    JOURNAL OF CONVEX ANALYSIS, 2025, 32 (01) : 199 - 226
  • [30] Regularization for Wasserstein distributionally robust optimization
    Azizian, Waiss
    Iutzeler, Franck
    Malick, Jerome
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29