Estimating Rainfall from Surveillance Audio Based on Parallel Network with Multi-Scale Fusion and Attention Mechanism

被引:6
|
作者
Chen, Mingzheng [1 ,2 ,3 ]
Wang, Xing [1 ,2 ,3 ,4 ]
Wang, Meizhen [1 ,2 ,3 ]
Liu, Xuejun [1 ,2 ,3 ]
Wu, Yong [5 ]
Wang, Xiaochu [1 ,2 ,3 ]
机构
[1] Nanjing Normal Univ, Minist Educ, Key Lab Virtual Geog Environm, Nanjing 210023, Peoples R China
[2] State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Peoples R China
[3] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China
[4] Univ Vienna, Dept Geog & Reg Res, A-1010 Vienna, Austria
[5] Fujian Normal Univ, Inst Geog, Fuzhou 350000, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
rainfall estimation; surveillance audio; machine learning; multi-scale fusion; CLASSIFICATION; RECOGNITION; RESOLUTION;
D O I
10.3390/rs14225750
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rainfall data have a profound significance for meteorology, climatology, hydrology, and environmental sciences. However, existing rainfall observation methods (including ground-based rain gauges and radar-/satellite-based remote sensing) are not efficient in terms of spatiotemporal resolution and cannot meet the needs of high-resolution application scenarios (urban waterlogging, emergency rescue, etc.). Widespread surveillance cameras have been regarded as alternative rain gauges in existing studies. Surveillance audio, through exploiting their nonstop use to record rainfall acoustic signals, should be considered a type of data source to obtain high-resolution and all-weather data. In this study, a method named parallel neural network based on attention mechanisms and multi-scale fusion (PNNAMMS) is proposed for automatically classifying rainfall levels by surveillance audio. The proposed model employs a parallel dual-channel network with spatial channel extracting the frequency domain correlation, and temporal channel capturing the time-domain continuity of the rainfall sound. Additionally, attention mechanisms are used on the two channels to obtain significant spatiotemporal elements. A multi-scale fusion method was adopted to fuse different scale features in the spatial channel for more robust performance in complex surveillance scenarios. In experiments showed that our method achieved an estimation accuracy of 84.64% for rainfall levels and outperformed previously proposed methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Deep Segmentation Network of Multi-Scale Feature Fusion Based on Attention Mechanism for IVOCT Lumen Contour
    Huang, Chenxi
    Lan, Yisha
    Xu, Gaowei
    Zhai, Xiaojun
    Wu, Jipeng
    Lin, Fan
    Zeng, Nianyin
    Hong, Qingqi
    Ng, E. Y. K.
    Peng, Yonghong
    Chen, Fei
    Zhang, Guokai
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (01) : 62 - 69
  • [22] Remote Sensing Small Object Detection Network Based on Attention Mechanism and Multi-Scale Feature Fusion
    Qu, Junsuo
    Tang, Zongbing
    Zhang, Le
    Zhang, Yanghai
    Zhang, Zhenguo
    REMOTE SENSING, 2023, 15 (11)
  • [23] A Convolutional Neural Network Based on Soft Attention Mechanism and Multi-Scale Fusion for Skin Cancer Classification
    Bao, Qiwei
    Han, Hua
    Huang, Li
    Muzahid, A. A. M.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (14)
  • [24] Multi-scale Underwater Image Enhancement Network Based on Attention Mechanism
    Fang Ming
    Liu Xiaohan
    Fu Feiran
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (12) : 3513 - 3521
  • [25] Desert classification based on a multi-scale residual network with an attention mechanism
    Weng, Liguo
    Wang, Lexuan
    Xia, Min
    Shen, Huixiang
    Liu, Jia
    Xu, Yiqing
    GEOSCIENCES JOURNAL, 2021, 25 (03) : 387 - 399
  • [26] Desert classification based on a multi-scale residual network with an attention mechanism
    Liguo Weng
    Lexuan Wang
    Min Xia
    Huixiang Shen
    Jia Liu
    Yiqing Xu
    Geosciences Journal, 2021, 25 : 387 - 399
  • [27] Siamese Network with Multi-scale Feature Fusion and Dual Attention Mechanism for Template Matching
    Zhao, Kai
    He, Binbing
    Pan, Shiju
    Zhu, Yuan
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6588 - 6592
  • [28] Parathyroid Gland Detection Based on Multi-Scale Weighted Fusion Attention Mechanism
    Liu, Wanling
    Lu, Wenhuan
    Li, Yijian
    Chen, Fei
    Jiang, Fan
    Wei, Jianguo
    Wang, Bo
    Zhao, Wenxin
    ELECTRONICS, 2025, 14 (06):
  • [29] Parallel attention multi-scale mandibular fracture detection network based on CenterNet
    Zhou, Tao
    Du, Yuhu
    Mao, Jingjing
    Peng, Caiyue
    Wang, Hongwei
    Zhou, Zhongwei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95
  • [30] Underwater Image Enhancement Based on Multi-Scale Feature Fusion and Attention Network
    Liu Y.
    Liu M.
    Lin S.
    Tao Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (05): : 685 - 695