Outlier Reconstruction Based Distribution System State Estimation Using Equivalent Model of Long Short-term Memory and Metropolis-Hastings Sampling

被引:7
|
作者
Xia, Mingchao [1 ]
Sun, Jinping [1 ]
Chen, Qifang [1 ]
机构
[1] Beijing Jiaotong Univ BJTU, Sch Elect Engn, Beijing 100044, Peoples R China
关键词
Distribution system state estimation (DDSE); outlier reconstruction; phasor measurement unit (PMU); equivalent model; long short-term memory (LSTM) network; Metropolis-Hastings sampling; ROBUST; IDENTIFICATION; ATTACKS;
D O I
10.35833/MPCE.2020.000932
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The accuracy of distribution system state estimation (DDSE) is reduced when phasor measurement unit (PMU) measurements contain outliers because of cyber attacks or global positioning system spoofing attacks. Therefore, to enhance the robustness of DDSE to measurement outliers, approximate the target distribution of Metropolis-Hastings (MH) sampling, and judge the prediction of the long short-term memory (LSTM) network, this paper proposes an outlier reconstruction based state estimation method using the equivalent model of the LSTM network and MH sampling (E-LM model), motivated by the characteristics of the chronological correlations of PMU measurements. First, the target distribution of outlier reconstruction is derived using a kernel density estimation function. Subsequently, the reasons and advantages of the E-LM model are explained and analyzed from a mathematical point of view. The proposed LSTM-based MH sampling can approximate the target distribution of MH sampling to decrease the number of the futile iterations. Moreover, the proposed MH-based forecasting of the LSTM can judge each LSTM prediction, which is independent of its true value. Finally, simulations are conducted to evaluate the performance of the E-LM model by integrating the LSTM network and the MH sampling into the outlier reconstruction based DDSE.
引用
收藏
页码:1625 / 1636
页数:12
相关论文
共 50 条
  • [31] Short-term power load forecasting using integrated methods based on long short-term memory
    ZHANG WenJie
    QIN Jian
    MEI Feng
    FU JunJie
    DAI Bo
    YU WenWu
    Science China(Technological Sciences), 2020, 63 (04) : 614 - 624
  • [32] Short-term power load forecasting using integrated methods based on long short-term memory
    Zhang, WenJie
    Qin, Jian
    Mei, Feng
    Fu, JunJie
    Dai, Bo
    Yu, WenWu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (04) : 614 - 624
  • [33] Short-term power load forecasting using integrated methods based on long short-term memory
    ZHANG WenJie
    QIN Jian
    MEI Feng
    FU JunJie
    DAI Bo
    YU WenWu
    Science China(Technological Sciences), 2020, (04) : 614 - 624
  • [34] Short-term power load forecasting using integrated methods based on long short-term memory
    WenJie Zhang
    Jian Qin
    Feng Mei
    JunJie Fu
    Bo Dai
    WenWu Yu
    Science China Technological Sciences, 2020, 63 : 614 - 624
  • [35] Rainfall prediction system for Bangladesh using long short-term memory
    Billah, Mustain
    Adnan, Md Nasim
    Akhond, Mostafijur Rahman
    Ema, Romana Rahman
    Hossain, Md Alam
    Galib, Syed Md
    OPEN COMPUTER SCIENCE, 2022, 12 (01) : 323 - 331
  • [36] Research on truck mass estimation based on long short-term memory network
    Hu, Jiazhen
    Shen, Xiaoyan
    Wang, Shasha
    Ma, Peifu
    Liu, Chenxi
    Sui, Xinyu
    ENERGY, 2024, 307
  • [37] Vehicle Lateral Velocity Estimation Based on Long Short-Term Memory Network
    Kong, Debao
    Wen, Wenhao
    Zhao, Rui
    Lv, Zheng
    Liu, Kewang
    Liu, Yujie
    Gao, Zhenhai
    WORLD ELECTRIC VEHICLE JOURNAL, 2022, 13 (01)
  • [38] A long short-term memory based Schaeffer gesture recognition system
    Oprea, S. O.
    Garcia-Garcia, A.
    Orts-Escolano, S.
    Villena-Martinez, V.
    Castro-Vargas, J. A.
    EXPERT SYSTEMS, 2018, 35 (02)
  • [39] Developing an Intelligent Agricultural System Based on Long Short-Term Memory
    Hsin-Te Wu
    Mobile Networks and Applications, 2021, 26 : 1397 - 1406
  • [40] Credit Risk Assessment Based on Long Short-Term Memory Model
    Zhang, Yishen
    Wang, Dong
    Chen, Yuehui
    Shang, Huijie
    Tian, Qi
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 700 - 712